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Abstract. We present the robotic system IRMA (Interactive Robotic
Memory Aid) that assists humans in their search for misplaced belong-
ings within a natural home-like environment. Our stand-alone system
integrates state-of-the-art approaches in a novel manner to achieve a
seamless and intuitive human-robot interaction. IRMA directs its gaze
toward the speaker and understands the person’s verbal instructions in-
dependent of specific grammatical constructions. It determines the po-
sitions of relevant objects and navigates collision-free within the envi-
ronment. In addition, IRMA produces natural language descriptions for
the objects’ positions by using furniture as reference points. To evaluate
IRMA’s usefulness, a user study with 20 participants has been conducted.
IRMA achieves an overall user satisfaction score of 4.05 and a perceived
accuracy rating of 4.15 on a scale from 1-5 with 5 being the best.

Keywords: Robotic Home Assistant · Human-Robot Interaction · So-
cial Robotics · Memory Service System · Speech Recognition · Natural
Language Understanding · Object Detection · Person Detection

1 Introduction

Trying to find misplaced belongings may be time consuming and might end in
frustration. A study about domestic assistive systems has shown that older adults
would prefer robotic assistance over human help to support them in finding lost
objects at home [3].

One assistive system developed for this task is the Home-Explorer presented
by Guo and Imai [16]. It locates objects, that are equipped with smart sensors,
in an indoor environment and is operated by a search interface. Deyle et al. [10]
use a similar approach by attaching RFID (Radio-Frequency Identification) tags
to household objects, which can then be found by a robot. Another example is
the robotic home assistant Care-O-bot 3 presented by Graf et al. [15], that can
execute fetch and carry tasks on objects. The user selects the object using a
touch screen attached to the robot.
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For such robots to be incorporated into everyday life, however, additional
aspects beyond functionality need to be considered. Foster et al. [13], for exam-
ple, present a robot bartender that can operate in dynamic social environments.
They identify both task success and dialogue efficiency as the main factors con-
tributing to user satisfaction. Fasola and Matarić [11] present a robotic system
that engages elderly people in physical exercise and conclude that users strongly
prefer a physical robot embodiment instead of a computer simulation. To our
knowledge, no working object finding system exists that provides a physical
robot embodiment, offers a natural and intuitive interaction, and is independent
of external sensors (e.g. on objects).

In a student project, we developed the stand-alone robotic system IRMA
(Interactive Robotic Memory Aid) that can help users find various objects in an
indoor home-like environment. IRMA integrates the required functionalities in
a stable and robust manner, aims for a more intuitive and natural interaction,
and is capable of learning the position of objects without the support of external
hardware. This paper presents system details and the scores IRMA received in
a user study. Also, the aspects of the system that have an impact on the users’
opinions as well as further insights gained in the study are discussed here.

2 The IRMA System

IRMA is a domestic robotic system that assists people in their search for mis-
placed belongings.1 It provides help in two ways, either by moving to the po-
sition of the requested object or by describing the requested object’s position
using other objects in the scene as reference points. The robotic system is able
to navigate through the home environment in a collision-free manner. To do
so, the robot creates a map beforehand. Knowledge about the current positions
of all objects is acquired by performing an initial exploration run through the
environment, during which the objects are detected and located on the map.

2.1 Architecture

We implemented IRMA as a distributed system in ROS (Indigo) [25]. As shown
in Fig. 1, the overall system is decomposed into eight modules which can be
grouped into four categories:

– Communication: There are three communication-related modules in the
system. The Speech Recognition module recognizes human speech and con-
verts the audio input into a string representation. The Natural Language
Understanding module takes the string as input and identifies the desired
object and type of action, which can be either “move” or “describe”. The
Speech Production module allows the output of generated natural language
descriptions, e.g. to describe an object’s position.

1 A video showing the robot’s performance is presented in the video session of the
IEEE RO-MAN 2016 conference [29].
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Fig. 1. An overview of the IRMA system: A picture of the robotic platform is shown
in addition to a list of the used hardware components (left) and the decomposition of
the IRMA system (right). The arrows depict the data flow.

– Perception: Two modules provide the required perceptual capabilities. The
Object Detection module uses visual input to detect and locate relevant ob-
jects in the scene. The Person Detection module uses both visual and audio
input to do the same for persons.

– Motion: Navigation performs exploration in an environment, maps it and
uses the map to navigate through the environment without any collisions.

– Interface: The Behavior module realizes the interface between all modules.
It is the core of the system and contains the control of the robot’s behavior.
For storing knowledge it relies on the Knowledge Representation module that
provides a database. It is also responsible for generating natural language
descriptions of an object’s position relative to other objects in the scene.

2.2 Robot Platform

IRMA’s robotic platform is composed of different hardware components, shown
in Fig. 1. The base component is a NAO torso. It offers a significant number
of in-built functionalities such as turning text into speech used by the Speech
Production module. Also, its appearance is very likely to make the overall system
look more approachable, as shown in [26]. The NAO torso is mounted on a
TurtleBot platform. The TurtleBot is accessed and controlled by the Navigation
module. To get both, depth information and high quality RGB images, an Xtion
camera is used, which is attached to the TurtleBot. The Xtion camera is used
by the Object Detection, Person Detection and Navigation modules. The robotic
platform is also equipped with a directional microphone and stereo microphones.
As the robot faces the human during a conversation, a directional microphone
enables a more robust speech recognition by reducing the noise from different
directions. The stereo microphones are used to perform sound source localization
to determine the position of the person relative to the robot [24].
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2.3 Methods

Speech Recognition: To convert speech signals to textual transcriptions the
speech recognition framework DOCKS (Domain and Cloud-based Knowledge for
Speech recognition) [27] is adapted. The concept behind DOCKS is to combine
the recognition advantages of large-scale ASR (Automatic Speech Recognition),
here Google ASR, with phoneme-based post-processing techniques. This restricts
the very general cloud-ASR results to a more specific, domain-based language.

To generate the domain-based language, user data has been collected via an
online form. The users were asked to write down sentences to make the robot
execute a task-object combination. These phrases are used as domain-specific
hypotheses. The hypothesis with the lowest phonetic Levenshtein distance [19]
to any of the cloud-ASR results is selected as the final textual transcription.

Natural Language Understanding: To understand the user command, the
following semantic words need to be identified: The requested action, the object
of interest and corresponding attributes (e.g. “find”, “ball”, “red”). Filtering
keywords is straightforward and fast, but it is restricted to specific words and is
highly error-prone (e.g. “I will find the ball” has a different meaning than “Can
you find the ball?”). Other known approaches, such as semantic role labeling [23],
rely on hardly accessible corpora that do not focus on the grammatical construc-
tions required in our scenario (e.g. direct and indirect questions).

Thus, a combination of bi-gram scoring, an ESN (Echo State Network) based
on Hinaut et al. [17], and a filter is utilized, see below. The ESN has been modified
to extract also attributes and special “clues”. The clues are important to differ-
entiate the meaning of sentences like “Tell me the color of the ball” and “Tell
me the location of the ball”. Thus, the roles extracted by our modified ESN are
predicate(object,clue) and object(attribute), e.g. tell(ball,location),
ball(red). We chose to use an ESN with 750 reservoir units and a leak rate of
0.2 after empirically evaluating different numbers of reservoir units and different
leak rates in a 6-fold cross-validation. In a pre-processing step, collocated words
are detected using bi-gram scoring and joined to provide only a one-word rep-
resentation to the ESN (e.g. “milk carton” to “milkcarton”). The filter that is
additionally applied to the output of the ESN serves two purposes: The assur-
ance that only context-relevant verbs and objects are extracted (e.g. “Where is
my love?” is beyond the scope) and the recognition of predefined synonyms.

As each sentence is processed individually by the ESN, the system is not able
to recognize context spanning more than one sentence. Also, it cannot handle
collocations consisting of more than two words or anaphora. Despite that, with
the proposed approach, IRMA is capable of recognizing a substantial number of
different grammatical constructions. Compared to grammar-based approaches,
the user is not limited to a specific set of commands, but can use various sentences
such as direct and indirect questions as well as imperative statements. This gives
the user freedom in formulating a request intuitively and naturally. While the
false negative rate lies above 93%, it achieves a true positive accuracy rate of
82% on an independently collected test set.
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Object Detection: A pipelined approach with classical image processing tech-
niques is used to detect and locate objects in real-time: First, region proposals
are extracted. Mean shift filtering [8] is used to smoothen the image. The im-
age is then binarized using adaptive thresholding and contours are extracted.
The bounding boxes around the contours define our ROIs (Regions Of Interest).
Due to the nonparametric nature of the segmentation pipeline, detections are
independent of specific scenarios and objects.

In the next stage, SIFT (Scale-Invariant Feature Transform) [21] features are
extracted from each ROI and BoW models (Bag of Visual Words) are created
for each ROI [12]. These are vectors counting the occurrence of certain groups
of features that are listed in a codebook. The codebook is constructed before-
hand by extracting SIFT features on all training images and performing k-means
clustering on the concatenation of the features. BoW models destroy the spatial
structure of the features that constitute an object, therefore we employ a spatial
pyramid-based ROI representation [18] to partially retain that structure: Each
ROI is recursively decomposed into four cells, where the depth of the recursion
is three. For the cells on the same layer, the BoW models are constructed and
are concatenated to obtain a layer-based intermediate representation. The final
ROI representation is then obtained by concatenating the vectors for all layers.

In the final stage, the ROI representations of all training images are used to
train K-SVM (Kernel Support Vector Machine) classifiers [9]. To deal with the
high-dimensionality in the histograms representing the ROIs, Histogram Inter-
section was used as a kernel distance metric [1].

To reduce the number of false positives caused by a noisy background, “object
background classes” are created. These classes act as a buffer between the object
and the background class in the dataset. This approach is combined with median
filtering on the list of detections.

Person Detection: To detect and then locate human presence in the robot’s
surroundings, visual as well as audio input is used. A pre-trained OpenCV Haar
features-based cascade classifier is applied to the image for frontal face detec-
tion [28]. This classifier can yield multiple face candidates, among which the one
with the largest bounding box area is selected. As the visual field alone is lim-
ited, sound source localization is additionally performed on audio input coming
from the stereo microphones. The implementation is based on Parisi et al. [24],
where the angle of the sound source relative to the robot is estimated using
TDOA (Time Difference Of Arrival) [22]. While it is not possible to distinguish
between a sound source that is located in the front or in the back, it can be
determined whether the sound source is located to the left or to the right, in
a range of ±90◦. This was taken into consideration when implementing person
tracking: If no face is detected in the visual field, but a sound is located, IRMA
is turned towards the sound source incrementally based on the sign of the angle
value. It stops turning once a face has been detected or a maximum number of
turns has been performed.
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Navigation: Robot localization and exploration of the environment rely on the
navigation stack of the ROS middleware. Robot localization is achieved using
the amcl stack, which uses a particle filter to track the pose of a robot against
a known map (Adaptive Monte Carlo Localization [14]). The robot explores its
environment by navigating in a collision-free manner to a sequence of waypoints
distributed throughout the room. If a particular waypoint is unreachable (e.g.
because of an obstacle), the robot drops the unreachable waypoint and carries on
to the next. The aim of exploration is to identify known objects and locate their
positions on a two-dimensional map of the environment. To do so, the robot first
identifies objects using the Object Recognition module. The centroid of the object
in the depth image is utilized to calculate the three-dimensional coordinate of
the object with respect to the robot’s reference frame. This 3D coordinate is
converted to a 2D coordinate and stored in the knowledge database for later
usage. To allow the robot to continuously move and, at the same time, process a
given frame for the object recognition task, timestamps are used to query caches
of transformations and depth information.

In order to move to a particular object, the object’s position needs to be
retrieved from the knowledge base and a valid path needs to be calculated.
However, as objects are usually placed on or even inside furniture (e.g. in a shelf),
the object’s position itself cannot always be chosen as the final destination point
for the robot. To overcome this problem, goal rectification was implemented.
This process results in a new goal, which is as close as possible to the original
goal (if the original goal is within an obstacle), and ensures that the goal is
reachable for the robot. The final orientation of the robot is chosen so that it
faces the object when it reaches its goal.

Knowledge Representation: Knowledge about the environment (e.g. object
positions) is stored in the RDF (Resource Description Framework) format. The
description of an object’s position is generated with respect to the robot’s view-
point. This verbal description is calculated in two steps.

At first, the reference objects that are closest to the requested object are
determined based on the Euclidean distance. If the two closest reference objects
have approximately the same distance to the requested object and it lies within
their convex hull, the requested object is considered to be “in between” both.

If there is no such relation, the direction (“right”, “left”, “front”, “behind”)
of the closest reference object needs to be computed. Initially, the perspective is
normalized so that the requested object becomes the center of the new coordinate
system and the y-axis corresponds to the robot’s viewing angle. The Cartesian
quadrant, in which the reference object (that is, its representative point) is,
determines two possible directions. In Fig. 2 (left) for example, the representative
point is in Quadrant I, so the directions are “front” and “left”. The reference
object’s bounding box is used and a 45◦-diagonal is computed through the corner
that points towards the opposite quadrant. The side of the diagonal, on which
the requested object is, determines the actual direction. In the example, it is
below the diagonal, and thus the requested object is “in front” of the reference
object. In Fig. 2 (right) a visualization of generated descriptions is shown.
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Fig. 2. Left: Determining the spatial relations between objects. Here, the requested
object is “in front of” the reference object. Right: The descriptions produced for a test
environment (the robot in the center). Each colored area has the same reference object
and the intensity corresponds to one of the four spatial relations, which are only shown
for the drawer. Gray stands for “in between”.

Behavior: The desired system behavior was modeled with SMACH [4], which is
a library for designing complex task-level executives. SMACH is faster than other
imperative scripting approaches or model-based task planners [5] and can be used
by a task planning system as a procedure definition architecture. Here, four par-
allel state machine containers were implemented. Each container performs one of
the following tasks: Exploration, Object and Person Detection, Person Tracking
and Object Finding. Among the termination policies that SMACH provides to
overrule an active state machine container by another one, preemption is used.

3 Evaluation

To evaluate the usability of IRMA, we conducted a user study2 with 20 par-
ticipants (8 female, 11 male, 1 not specified) of different nationalities and ages
ranging from 20 to 50 years. The participants were proficient in English and
their previous experience with robots varied significantly: 5 did not have any
experience with robots, 10 had little experience and 5 were familiar with robots.

3.1 Experimental Setting

The user study took place in a living room environment, shown in Fig. 3. It
consists of a couch, a table, a drawer and a shelf placed along walls and a setting
of two chairs with a coffee table between them. The setting covered 3.7m×4.8m.
To provide consistent lighting conditions, all windows were shaded and artificial
light was used. The room was mapped a priori to provide information about the
layout and positions of static objects (i.e. furniture). Two objects, a milk carton
and a trash can, can be moved within the environment.

2 Our dataset is available at https://figshare.com/s/d949d3410df8db468f77 [30].

https://figshare.com/s/d949d3410df8db468f77
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Fig. 3. Left: Setting and used objects. Right: Schematic map of all four object con-
figurations used in the user study. The circle marked with the letter ‘T’ indicates the
trash can and the circle marked with ‘M’ indicates the milk carton.

The participants were introduced to the environment and the robot IRMA.
After being informed about the available objects and tasks that can be requested,
they were asked to interact with the robot. In particular, the participants were
asked to speak in a moderately loud voice and to repeat their command if IRMA
does not react within 5-10 seconds.

In each user study session, a participant performed 8 runs in total, where
each run ends with the robot performing the command. After the first 4 runs,
the placement of the objects within the room was changed. All object configu-
rations used in the study are shown in Fig. 3 (right). After each run, the par-
ticipants were asked to rate how satisfied they were with the performed action
and how accurate the system was in their opinion. After the complete session,
the participant filled out a questionnaire comprised of three parts: (1) the SUS
questionnaire [6], which measures overall usability, (2) the GODSPEED ques-
tionnaire [2], which measures five key HRI aspects, namely Anthropomorphism,
Animacy, Likeability, Perceived Intelligence, and Perceived Safety, and (3) ad-
ditional questions regarding the overall performance of the system that were
answered on a 5-point Likert scale [20].

3.2 Results

Overall, IRMA correctly understood the requested type of help in 82.9% and
the requested object in 92.1% of all runs performed during the user study. We
did not consider two runs that had to be aborted and six runs that were not
performed due to network issues. The response time, which was measured for
each individual run, is the time between the end of the user’s request until IRMA
finishes its task, i.e. either having moved in front of the object or having finished
its verbal description. For all runs without repetitions, the average response
time for the task describe is 10.1 seconds, whereas the average response time
for the task move is 36.8 seconds. For the move-task the robot did not move in
19.5% of the runs since it was already positioned close enough to the requested
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object. In the other cases the distance to the object was reduced, except for
one run (out of 82 in total). The results of the user feedback are summarized in
Tab. 1. IRMA achieves a mean SUS score of 77.3, which translates to a C on
the Grade Scale and to a Good on the Adjective Rating Scale according to [7].
The achieved GODSPEED scores, which evaluate key HRI aspects, are shown
in Tab. 1. IRMA was perceived as likeable by the participants (4.28). However,
it received a comparatively low score for antropomorphism (2.95).

Table 1. User study results including the SUS score (on a scale 0 − 100 with 100
being the best), the GODSPEED scores, and the scores computed from the additional
questions on a scale of 1 − 5 with 5 being the best score

SUS Mean (±StD)

Score 77.3 (±15.3)

GODSPEED Mean (±StD)

Anthropomorphism 2.95 (±0.66)
Animacy 3.19 (±0.70)
Likeability 4.28 (±0.57)
Perceived Intelligence 3.61 (±0.69)
Perceived Safety 3.86 (±0.48)

Additional Questions Mean (±StD)

Average over all runs

User Satisfaction 4.05 (±0.56)
Perceived Accuracy 4.15 (±0.56)

Average over all sessions

Usefulness for Elderly 4.15 (±1.19)
Intuitiveness 4.25 (±0.94)
Enjoyment 4.21 (±0.83)

The mean user satisfaction is little correlated with the perceived quickness
of response (correlation value of 0.35). No correlation could be found between
the final distance of the robot from the queried object and the satisfaction (0.0)
or accuracy (−0.13) perceived by the user for a move-task.

The users’ satisfaction and assessment of accuracy are consistent for all four
object configurations used, as shown in Fig. 4 (left). The standard deviation
for the settings are roughly the same and they overlap across all settings. This
indicates further that no setting was significantly better or worse than the others.
The slightly lower value in the accuracy rating for Config 4 is most likely due to
the central position of the milk carton, see Fig. 3 (right). The central position of
the milk carton might make the usefulness of the system seem less valuable due
to the obvious placement of the object. Also, after completion of the move-task,
the robot was on average further away from the milk carton, whereas it got very
close to the trash can. This interpretation can be justified by Fig. 4 (right) which
shows lower accuracy ratings for the runs including the milk carton compared
to the runs including the trash can, especially for the move-task.

Although the participants were informed in advance about the possible tasks
IRMA can perform, in 5.2% of all runs users used commands like “bring” or
“get me” to instruct the robot. 3.6% of all sentences include other object refer-
ences (e.g. “Is the milk carton left or right from you?” or “Is the milk box on
the table?”). Also, in 1.3% two tasks were requested within one sentence and
in 1.9% anaphora were used. In total, in 13.5% of all sentences, the user asked
IRMA for something that it was not able to understand or perform.
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Fig. 4. Left : User satisfaction and accuracy scores for each object configuration Right :
User satisfaction and accuracy scores for each individual task in Config 4

The number of times a user had to repeat a phrase until IRMA understood
the command had a negative impact on his satisfaction, as shown in Fig. 5 (left).
IRMA understood 50.7% of the instructions on the first try, while only 11.4% of
the instructions had to be repeated more than two times. However, the assess-
ment of accuracy does not seem to be affected by the number of repeats.

Fig. 5 (right) shows that the subjective rating of IRMA’s intuitiveness as well
as the user’s enjoyment increased with how often the robot identified the task
and object requested by the user correctly. The relation between the number
of utterances that IRMA misinterpreted and the resulting intuitiveness (signif-
icantly worse only for 3 sentences) and enjoyment scores can be seen in this
plot. The number of misinterpreted commands is correlated with intuitiveness
and enjoyment, with the correlation coefficients being −0.54 and −0.51 respec-
tively. It also turns out that the correct object being identified by the robot is
more important for the satisfaction of the users than the intended task being
performed by the robot. While the correlation coefficient for user satisfaction
and correct object is 0.57, the correlation for user satisfaction and correct task

Fig. 5. Left : User satisfaction and accuracy scores versus the number of times a user
had to repeat himself until a reaction of the robot was observed Right : The number of
sentences misunderstood by IRMA versus the intuitiveness and enjoyment scores
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is only 0.29. Similarly, the users perceive the performance of the robot as more
accurate if the correct object is being identified compared to the correct task
being performed. Here, the correlation coefficient for the perceived accuracy and
the correct object is higher than the one for accuracy and correct task, with the
values being 0.56 and 0.25 respectively.

Tab. 2 shows that all subjective factors obtained in the user study, such as
satisfaction and accuracy, are uncorrelated to the previous experience the par-
ticipants have had with robotics. The highest correlation value with experience
with robots exists for a GODSPEED aspect, namely animacy, with still a low
value of −0.29.

Table 2. Results of the correlation between the users’ prior experience with robots
and SUS, GS (GODSPEED) and additional subjective factors

Correlation Experience

SUS:Score 0.22
GS:Anthropomorphism 0.02
GS:Animacy −0.29
GS:Likeability 0.10
GS:Perceived Intelligence −0.20
GS:Perceived Safety 0.02

User Satisfaction −0.28
Perceived Accuracy −0.25
Usefulness for Elderly 0.06
Intuitiveness 0.08
Enjoyment 0.09
Perceived Quickness −0.09
Time Acceptable 0.00

4 Discussion

In general, IRMA performs well and achieves a high user satisfaction. However,
there are certain parts of the system that can still be improved in future studies.
The rotation of the robot was confusing to many participants. Firstly, Person
Detection sometimes recognized false positives in a very cluttered environment
and thus, the robot stopped rotating at the wrong time. Secondly, participants
were not aware that the robot is trying to locate the user and sometimes misin-
terpreted this behavior as a “reaction” to their request.

Also, sometimes participants used sentences containing anaphora (e.g. “I still
cannot find the milk. Can you show it to me?”). This occurred in 1.9% of all
utterances. The Natural Language Understanding module, however, is not yet
capable of understanding anaphoric references or context spanning multiple sen-
tences. On average only every second request of the participants was performed
by the IRMA system. In many cases, Speech Recognition was not able to rec-
ognize the sentence correctly. This might be due to the microphone not being
clearly directed towards the user, as person tracking stopped too early. More-
over, in 21% of all recognized sentences, the sentences contained either an object
or a task that was different from what was actually requested by the user. The
results show that a wrongly understood object has more impact on the user
satisfaction than a wrongly chosen task (describe or move). This is because the
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position of the wrong object is not of interest to the user, while performing the
wrong task with the correct object is still helpful.

Most people preferred one of the capabilities over the other (40% move,
55% describe, 5% neither-nor), which shows that it is useful to have both capa-
bilities in our scenario. However, the fact that users often expected the robot
to interact more with the environment and bring the object directly to them,
indicates that this additional task might be a more helpful form of assistance to
the user when compared to the move-task alone. The assistance could further be
enhanced by other tasks, e.g. with a reminder functionality for taking medicine.
One reason for the higher preference of the describe-task might be that the aver-
age response time for the describe-task took only about 25% of the time required
for the completion of the move-task. Additionally, description tasks were rated
with a higher accuracy (4.3) compared to movement tasks (4.02).

The results of our user study show that the previous experience of the users
with robots has little influence on how they rated the system. In combination
with a relatively high satisfaction score of 4.05 (on a scale from 1-5 with 5 being
the best), this indicates that our system is intuitive to use. Moreover, the average
response time for a describe-task only takes 10.1 seconds. Assuming that a search
by the user without external help would take longer than 10 seconds, IRMA can
save valuable time and effort of the user locating misplaced belongings.

5 Conclusion

IRMA is a stand-alone robotic system designed to help people in finding lost
objects. Several state-of-the-art methods and frameworks have been integrated
to enable an easy, robust and natural human-robot interaction. IRMA has the
ability to explore the environment, detect objects and remember their positions.
It can also describe the location of objects using natural language and is able
to move to a specified object, when the user asks to do so using natural phrases
(e.g. direct and indirect questions as well as imperative statements).

The results of our user study with 20 participants show that the system is able
to accomplish its task to an average satisfaction rate of the user of 4.05 on a scale
from 1-5 with 5 being the best. IRMA is able to identify the intention of the user
for every second sentence that has been naturally uttered by the participants,
and perform the corresponding task successfully. As the average response time
for a successful description of the object’s position is 10.1 seconds on average,
IRMA can save time for users, especially elderly, finding a misplaced belonging.
IRMA has also shown to be intuitive to use, as the user’s previous experience
with robots has no influence on the subjective evaluation of the system.
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