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ABSTRACT

Advancements in Human-Robot Interaction involve robots
being more responsive and adaptive to the human user they
are interacting with. For example, robots model a person-
alised dialogue with humans, adapting the conversation to
accommodate the user’s preferences in order to allow natural
interactions. This study investigates the impact of such per-
sonalised interaction capabilities of a human companion robot
on its social acceptance, perceived intelligence and likeability
in a human-robot interaction scenario. In order to measure
this impact, the study makes use of an object learning scenario
where the user teaches different objects to the robot using
natural language. An interaction module is built on top of the
learning scenario which engages the user in a personalised
conversation before teaching the robot to recognise different
objects. The two systems, i.e. with and without the interac-
tion module, are compared with respect to how different users
rate the robot on its intelligence and sociability. Although
the system equipped with personalised interaction capabilities
is rated lower on social acceptance, it is perceived as more
intelligent and likeable by the users.
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INTRODUCTION

As research in Human-Robot Interaction (HRI) is advancing,
more and more agents are being equipped with enhanced in-
teraction capabilities, allowing them to operate well in human-
centred environments. Companion robots, in particular, are
designed to possess multi-modal perception capabilities al-
lowing them to pick up verbal as well as non-verbal cues
while interacting with humans. One thing which can be seen
clearly is that in order to develop agents that work well in a
human environment, pure robotic and computing capabilities
are not enough [9]. Such robots need to interact as naturally
as possible with humans to blend well with their environments
also taking into consideration the psychological aspects of an
interaction [8].

Companion robots that operate in home environments such
as working with children or the elderly should possess the ca-
pability to understand the environment and the users to adapt
their behaviour accordingly. This makes the robots more aware
of their surroundings [8]. A robot that is able to differentiate
between different users and remember their preferences while
interacting with them is also expected to be perceived as in-
telligent and likeable by the users [14]. Such robots need to
hold a two-way communication with the user. They need to
constantly update their knowledge, adding information about
the user and the environment in which they operate and use
this information to modify their responses.

This study aims to measure the impact of such personalised in-
teraction capabilities on the perceived intelligence and likeabil-
ity of a human companion robot in learning scenarios. Also, it
investigates whether improving the qualitative experience of
the user during interaction results in a higher evaluation of the
robot’s overall competence in a particular task.

To achieve these objectives, the study compares two conditions
of the same system in which users are instructed to teach, using
natural language, the Neuro-Inspired Companion (NICO) [22]
robot (Figure 1) to recognise and recall different objects. Both
the conditions realise the Humanoidly Speaking [18, 39] sce-
nario for object learning. While the first condition implements
only the learning scenario on NICO, the second one extends



Figure 1: Neuro - Inspired COmpanion Robot (NICO) in the
object learning scenario.

it with an interaction module that allows the users to engage
in a personalised conversation with the robot where the robot
asks them about their name and personal preferences and re-
calls them when it sees the users again. Both conditions are
compared on the basis of how different users rate the robot on
its intelligence and sociability.

RELATED WORK

Over the years in HRI research, personalisation has been re-
alised in three different contexts; allowing users to customise
the “look-and-feel” of robots [23], designing the robots to in-
crease their friendliness or social acceptance [34], or allowing
to develop long-term relationships between the users and the
robot [24]. This study focusses on making the users’ expe-
rience of interacting with the robot pleasant and enriching.
Personalisation is achieved by making the robot sensitive to
the users, recognising them and using the information shared
by them to model a conversation. Since the robot also re-
members different users and their preferences, the robot is
expected to give an impression of providing special attention
and personal recognition to the users.

This study uses the multi-modal sensing capabilities of the
NICO robot to realise interactions with the user. The robot
is able to use its vision capabilities to identify and engage
the user who interacts with the robot using natural language.
For the learning scenario, a modified implementation of the
Humanoidly Speaking [18, 39] object learning scenario is
used, allowing the user to teach NICO to recognise and recall
different objects.

The NICO Robot

NICO, the Neuro-Inspired COmpanion [22] (Figure 1), is a
teen-sized developmental robot designed and built for neu-
rocognitive research. NICO is equipped with two cameras,
modelled as NICO’s eyes, which are used to capture the vi-
sual scene. The LED markers on its face help in modelling
facial expressions which can be used to articulate emotional
concepts in a conversation. It can also use its robotic arms
for gesticulation and object manipulation. For the study, it
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Figure 2: Overview of the Interactive Scenario.

was also equipped with an external microphone to accurately
capture the voice of the participant.

Humanoidly Speaking Scenario

The Humanoidly Speaking [18, 39] scenario, originally im-
plemented on the NAO robot, was modified for this study
and implemented on the NICO robot. It involves an object
learning scenario where users are able to teach objects to the
robot using natural language instructions. Objects are placed
on a table in front of the robot (See Figure 1) and referred to
using their relative positions (left, middle, right) on the table,
with respect to NICO. For example, “The doughnut is in the
middle.”

The visual scene of the table is captured and the objects are
segmented into three corresponding regions. These segmented
images are then fed to a Convolutional Neural Network (CNN)
trained to classify different objects. No labels are assigned to
the objects, yet. Users are able to assign labels to the initially
unknown objects using natural language. Once the objects
are taught, NICO is asked to recall and point to these objects
using its robotic arms. This allows the system to be scalable
as the robot can be trained to identify and recall any object by
retraining the CNN classifier.

MODELLING THE INTERACTION SCENARIO

The Humanoidly Speaking scenario acts as the learning sce-
nario for both conditions. In the interaction scenario, the
learning is equipped with an interaction module that allows
for a natural and human-like interaction with the user. The
objective of the interaction module is to engage and motivate
the user to teach different objects to NICO. The interaction
flow can be seen in Figure 2. The users interact with NICO
using natural language, which then models a conversation with
them asking for their name and personal preferences. When
the interaction module is triggered, NICO attempts to locate,
identify and track the users and models a conversation using a
state-based dialogue manager.

The different components entailed in realising the interaction
scenario (Figure 3) are devised as ROS! nodes which interact
with each other as well as internally using ROS messages and
services. Different components of the interaction model [31]
are explained in the following sections.

Thttp://wiki.ros.org [Accessed 16.04.2017]



Vision

Humans use their vision capabilities to look for objects of
interest in their visual field such as faces or objects to manip-
ulate. Also, during human-human interactions, recognising
other individuals and looking at them allows humans to en-
gage in a more meaningful conversation [7, 11]. Thus, while
modelling an interaction with humans, a companion robot
should also make use of such capabilities to interact with the
users. Detecting and recognising the users and tracking their
faces during an interaction would allow the robot to appear
interested and engaged in the conversation, evoking a similar
response from the user.

Face Detection and Tracking

One of the most common approaches for face detection is
applying Haar-like feature-based cascades [42] to locate the
face in the visual frame. The vision system [31] attempts to
improve the performance of such an approach by augmenting
it with template matching. Once a face is found, the algorithm
looks only in a specific region of interest determined by the
centre of the last detected face. Thus, the area in which the
algorithm looks for a face is reduced, speeding up the process
of detection with the Haar cascades. For face detection and
tracking, a Convolutional Neural Network (CNN) based ap-
proach [3] for localising the most prominent face in the visual
frame was also attempted but not used due to performance and
latency issues.

Haar-like feature-based face detection combined with template
matching results in a robust face detection algorithm which
provides a strong basis for an effective face tracking. The
algorithm tries to track the detected face by keeping it at the
centre of the visual frame by rotating NICO’s head accordingly.
Also, in order to further underline NICO’s awareness of the
user, it displays a “Happy” emotion using its face LEDs while
detecting and tracking a face.

Face Recognition

Recognising the users and differentiating between them be-
comes a necessary task for a robot aiming to model an in-
teraction with humans. Face recognition is an active field of
research [1, 6, 35]. For this study, Local Binary Pattern His-
tograms (LBPH) [1] and CNN based approaches [35] were
tested. Although both approaches gave accurate results, the
CNN-based approach turned out to be resource and computa-
tion intensive needing at least one second of processing time
per frame. Thus, the LBPH-based approach was used for the
user study. For face recognition, the classifier was trained
using the data set of face images collected from project mem-
bers and the participants as known faces and the Extended
Cohn-Kanade data set [28] for modelling unknown faces.

Once a face is recognised, a confidence measure is associ-
ated with each prediction which defines how trustworthy the
prediction can be interpreted to be. Thus, a known person
corresponds to a high confidence for one of the known faces
while an unknown person yields low confidences for all the
known faces. In case a new person is encountered, data for
that person is recorded and the classifier is trained again.
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Figure 3: System Architecture for the Interactive Module.

Speech

Auditory information processing is an essential part of the
system, as communication with NICO is realised using nat-
ural language. Results from speech recognition are used as
input for the language module. Apart from generating text
from speech, the speech signal is also used to identify the user
speaking with NICO (see Figure 4). Speaker identification al-
lows to recognise and remember persons solely based on their
speech characteristics. Furthermore, a trigger is implemented
that allows to initiate and end a conversation with NICO in
a natural way using “Hello, NICO!” and “Goodbye, NICO!”
respectively as cue-phrases.

Speech Recognition

Speech recognition is implemented using the DOCKS frame-
work [38] which combines domain-specific knowledge with
predictions from Google’s cloud-based Automatic Speech
Recognition (ASR). This improves the performance of natu-
ral language understanding by omitting out-of-domain words.
Despite the fact that small and specific language models (LM)
result in only limited interaction capabilities, the system [31]
combines a small LM containing the cue-phrases and a large
LM modelling the full interaction in a cascading manner.

Speaker Identification

One of the most commonly used approaches for speaker iden-
tification is using Gaussian Mixture Models (GMMs) on Mel-
Frequency Cepstral Coefficients (MFCCs) extracted from the
speech-audio signal [26, 30]. Although applying a GMM
implementation to a clean training data set yielded good re-
sults, problems occurred when facing noisy conditions during
live application. MFCCs are known to be sensitive to noise,
leading to decreased performance in noisy environments [44].
Using a CNN on Mel-Spectrograms [31] derived from speech
audio revealed to be a better choice for the proposed system
in terms of accuracy and robustness. As CNNs can be used
to learn relevant features directly from the audio signal [15,
29], they avoid various pre-processing steps and the selection
of engineered features such as MFCCs. For this implementa-
tion, the CNN was trained on a speech data set consisting of
samples from project members and the participants.

When the classifier confidence was not high enough (empiri-
cally defined threshold), the speaker was classified as unknown.
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Figure 4: Process overview for the Interaction Module

In such a scenario, the speech recordings from the unknown
speaker, together with known speakers, were used to retrain
the network.

Multi-Sensory Integration

Making use of different modalities can improve robustness [4]
and introduce redundancy which helps to cope with scenarios
where only limited information is available (for example, the
user is speaking but not in the visual field). The Multi-Sensory
Integration component [31] combines predictions from Face
Recognition and Speaker Identification using a weighted aver-
age of both predictions, generating the final prediction from
the system. A higher weight is assigned to face recognition
due to the short duration of the sound sample available for
classification at the beginning of the conversation as well as
the noisy environment.

Language

During an interaction, the robot needs to understand the infor-
mation provided by the user and to attribute this information
in the robot’s model of the world. The language module [31]
allows NICO to extract this information about the environment
and the user through user utterances and formulate appropriate
responses. Furthermore, it is also responsible for updating
changes in the model about the world as new information
is obtained. The language module consists of four compo-
nents (see Figure 4) namely, Natural Language Understanding
- Named Entity Recognition, Dialogue Management, Knowl-
edge Base and Natural Language Generation.

Natural Language Understanding

The Natural Language Understanding (NLU) component ex-
tracts relevant semantic information from human utterances
and sends this tagged information to the Dialogue Manager

(DM). Named Entity Recognition (NER) extracts relevant in-
formation (predicates) from input sentences assigning them to
different information slots. For example, for the sentence:

“My name is Peter and I am from Germany”

It creates information slots such as [’Peter’ PER,
’Germany’ LOC] and extracts Name (person_id,
'Peter’) and From(person_id, ’Germany’) as predi-
cates. In order to enhance the learning capabilities of NICO,
the sub-components of NER which include a POS-tagger
and an NP Chunker, are designed to automatically learn
from the existing corpora. For this study, a parametric [12]
and a non-parametric model [27] were compared and both
proved capable of providing learning capabilities without any
additional pre-processing steps.

Dialogue Manager

The Dialogue Manager (DM) can be understood as a decision
maker that simulates the action selection process to decide
what information the robot should seek and how to ask for
it. It then sends the corresponding Action ID to the Natu-
ral Language Generation (NLG) component. If necessary,
information from the data repositories (Knowledge Base) is
obtained and a decision on how to respond to the user is made.
SMACH? is used to implement a finite-state dialogue manager,
where each response is a state in the state machine. A total
of 32 states were realised for the interaction module. Some
examples of state transitions can be seen in Table 1.

Knowledge Base
The purpose of the Knowledge Base (KB) component is two-
fold. Firstly, it provides a way of modelling pre-existing

2http ://wiki.ros.org/smach [Accessed: 17.04.2017]



User Utterance Input Received Executed State Action Performed Transition Output Utterance
ConvLvl: 0 e
“Hello, Nico!” PID: 0 Hello it Plztlxllgk_nzown’ Set ConvLvl=1 | AID:2; ‘Hello, what is your name?’
Pred:{ ‘hello’:*’}
ConvLvl: 1 Save name to KB AID: 5; ‘That’s a good name, {Erik}.
‘My name is Erik. PID: 0 Name Get PID: 1 (Known person) | Set ConvLvl =2 I will remember it.
Pred:{ ‘PER’:‘Erik’ } Set AID =5 Are you having a good day?
ConvLvl: 42 .t . §
“Goodbye, Nico!” PID: | Demo-1 If goodbye, Set ConvLvl = 0 AID. 1; ‘OK, {Enk}., I really ’
. v set AID=1 enjoyed our conversation today.
Pred:{ ‘goodbye’: "}

Table 1: State transition examples. (ConvLyl: Conversation level, PID: Person ID, Pred: Predicate(INT, PER), AID: Action ID, KB: Knowledge Base)

knowledge as well as to incorporate knowledge acquired by
the DM during the conversation with the user. Secondly, it
provides the link from this knowledge to other components,
thus offering support in modelling the structure of the dialogue.
The structure of the knowledge base [16] corresponds to a typ-
ical rule-based system and consists of three main components,
namely a database, an inference engine and an interface to the
inference engine. The database contains knowledge as a list of
rules. The inference engine processes the information based
on the existing knowledge in the rule base and the interface
retrieves the relevant information based on custom requests.

Natural Language Generation

Natural Language Generation produces a text representation of
what the robot should say and utters the sentence through Text-
to-Speech synthesis. NLG has the purpose of turning an action
ID (plus provided parameters) into a sentence understandable
for humans. This is realised using a template-based approach
[33, 40]. In this approach, template sentences (with blanks)
for each action are provided which are then filled out with
the provided information. There are 114 sentences which
are mapped with the respective action IDs created for this
component. When an action ID from the DM is received,
the corresponding sentence will be uttered using Google’s
text-to-speech engine (gTTS 3 ver. 1.1.8).

EXPERIMENTS

To evaluate the impact of the added interaction module, an
experiment was designed to investigate whether participants
experience a qualitative difference when NICO indulges in
a personalised interaction with them in comparison to the
baseline scenario. A user study was carried out in order to
assess the perceived intelligence and sociability of the robot
using specialised questionnaires, which the participants filled
in after having completed the experiment.

User Study

The user study consisted of 27 participants (18 male, 9 female)
in the age group of 18 to 35 years. These participants were
recruited amongst students and employees at the university.
The participants were asked to fill in details about their prior
experience working with robots which ranged from no experi-
ence at all to high experience, with no majority in either group.
Participants reported having average to fluent spoken English
skills. This was important as the experiments were conducted
in English.

3https ://pypi.python.org/pypi/gTTS [Accessed: 19.04.2017]

After obtaining an informed consent on data privacy measures
and the general procedure of the study, participants were split
randomly into two discrete groups. The first group (13 partic-
ipants) was assigned to the baseline condition (Humanoidly
Speaking scenario without personalised interaction capabili-
ties) while the second group (14 participants) was assigned
to the interactive condition. The assignment of participants
to these respective groups was done by the operator who also
ensured that the system is running and could be shut down im-
mediately in case of any contingency. Both the experimenters,
who guided participants throughout the experiment, as well
as the participants themselves, were blinded from the user
group assignment. This double-blinded design was chosen to
reduce undesired effects of biases, i.e. the participants’ bias
from knowing which condition they were assigned to or the
experimenters biasing the participants based on their knowl-
edge about the system. The experimenters, therefore, followed
the same protocol while introducing the participants to either
of the systems.

The task to be performed by the participants consisted of
two interactions. In the first interaction, participants were
instructed to teach NICO objects by referring to their posi-
tions on the table. After having taught objects, in the second
interaction, participants were asked to evaluate if NICO could
recall all the learnt objects. Each interaction lasted for about
15 minutes (with at least 10 turns) with a 10 minutes break in
between.

The main difference between the baseline condition and the
interaction-enabled condition was based on how NICO inter-
acted with the users. For the baseline condition, participants
were expected to directly teach or make NICO recall objects,
whereas the interactive condition involved a personalised in-
teraction prior to object learning or recalling. As the users had
never interacted with NICO, they were not recognised in the
first interaction and personal information, such as their name,
nationality etc. was sought. NICO then learnt to recognise the
participants based on their appearance as well as their way of
speaking and remembered the personal information obtained,
which could later be recalled in the second interaction.

After completing both interactions, the participants were asked
to fill out a questionnaire recording their evaluation of the sys-
tem. Only after the participants had filled in the questionnaire,
they were informed about their group assignment.



(a) The operator monitoring the system. (b) User interacting with NICO.
Figure 5: Experiment Set-up.

Experiment Set-up

The experiment set-up consisted of an artificially well-lit room
in order to exclude effects of changing natural lighting con-
ditions. Three toy objects (a melon, a doughnut and a box)
were placed on a table covered with a black sheet simplifying
object segmentation and recognition. During the interaction,
the participants were instructed to stand approximately one
meter in front of NICO. The operators were positioned behind
an artificial wall separating them from the participants in order
to avoid any communication between the two during the exper-
iment. The above-explained experiment set-up can be seen in
Figure 5 showing the operator as well as a participant interact-
ing with NICO. Once the participants had finished interacting
with NICO, the questionnaire was presented in an electronic
form and the data obtained was pseudonymised and stored in
the database. Any video or audio data recorded during the user
study was deleted after the experiment.

Questionnaire

To compare the performance between the two conditions, the
devised questionnaire consisted of three parts: The GOD-
SPEED test [5], questions based on the UTAUT model [41]
and some additional questions (MISC) measuring the perfor-
mance of the interaction module (see Table 2). All questions
were presented in a random order to the participants with some
questions also scale-inverted to avoid any reporting bias. All
questions were based on a 5-point Likert scale [25].

e GODSPEED: The GODSPEED test [5] is a widely used test
to measure how participants perceive a robot. It measures
several attributes including perceived intelligence which
was a focus of this study. More specifically, it measures
Anthropomorphism, Animacy, Likeability, Perceived
Intelligence and Perceived Safety.

Question Negative answer | Positive answer
How much d_oes the robot pay Not much Alot
attention to you?
Did the robot keep you
engaged by paying attention Not at all Always
at you while talking?
How likely does the robot . .
remember you? Very unlikely Very likely
How likely will the robot . .
remember you next time? Very unlikely Very likely
HOW. confident was the system Not confident Very confident
in remembering you?

Table 2: MISC questions.

e UTAUT: The Unified Theory of Acceptance and Use
of Technology (UTAUT) [41] is a model for evaluating
the acceptance of the technology. It is based on four
key aspects, namely Performance Expectancy, Effort
Expectancy, Social Influence and Facilitating Conditions.
A customised version of the UTAUT questionnaire was
used in the experiment. In addition, positive and negative
variants for the same questions were randomly chosen.

e MISC: Focussing on attributes specific to the interaction en-
abled system, some miscellaneous (MISC) questions were
created concerning NICO’s ability to be attentive and to
remember the participants.

Results

As the two conditions were evaluated by different sets of par-
ticipants, the choice of statistical analysis for significance was
limited to two independent sample tests. In order to evaluate
the ordinal responses in Likert scale from a small number
of participants, an appropriate test should be able to handle
the multivariate ordinal aspect of the collected data and have
enough power to detect a statistical difference with small sam-
ple sizes. While the debate over whether ordinal scales could
be viewed as interval scales has been going on [20], recent
studies in medical research have heavily criticised approaches
using parametric statistical tests on ordinal data [19, 20]. Other
studies have suggested that parametric tests on ordinal data
should only be used as a pilot analysis under normality as-
sumption [2, 10].

Thus, a multivariate variant of the Mann-Whitney U test was
chosen for this study to ensure the validity of the result. The
test was carried out based on an implementation from the Spa-
tiaNP R-Package [36]. The continuous assumption of the
data is only considered for trend analysis to support investi-
gating the direction of changes as the multivariate tests do not
explicitly provide information about trends.

Furthermore, post hoc analysis on each individual question
was performed using the Wilcoxon rank-sum test on two in-
dependent samples from the Hotelling R-package [13]. This
choice of tests also influences the way missing data was han-
dled. In contrast to replacing missing data with mean val-
ues [17], since all questions in GODSPEED and UTAUT ques-
tionnaires are considered as multidimensional variables, all
questions in one dimension are excluded if one of their coun-
terparts contains missing data.

For the GODSPEED questionnaire, all the five aspects mea-
suring the perception of the robot were evaluated (Figure 6).
The standardised statistics Q% and Degree of Freedom (DoF)
for all tests on five dimensions are reported in Table 3 with
significant results highlighted. Significant changes in the way
participants perceived the robot were detected in two out of
five dimensions: Likeability (0% ~ 12.7, p-value = 0.026) and
Safety (0% ~ 9.1, p-value = 0.027) as well as some evidence
for Intelligence (Q* ~ 9.85, p-value = 0.079).

In this multivariate setting, the test statistics could not deter-
mine the direction of influence and thus, post hoc analysis
had to be carried out on each of the questions [32]. The
trend analysis (Figure 6) suggests that the interaction-enabled
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Figure 6: Comparison of average values and trend analysis
for the GODSPEED Questionnaire including 95% confidence
interval.

ANT: Anthropomorphism, ANI: Animacy, LIK: Likeability, INT: Perceived
Intelligence, SAF: Perceived Safety

GODSPEED Dimension 0? | DOF | p-value
Anthropomorphism 8.9606 5 0.110
Animacy 6.0206 | 6 0.421
Likeability 127130 | 5 0.026
Intelligence 9.8482 5 0.079
Safety 91397 | 3 0.027

Table 3: Test results for the Mann-Whitney U test on the
GODSPEED Questionnaire.

system performed better. Additionally, univariate, one-sided
Wilcoxon-Mann-Whitney tests on each individual question
for Likeability and Perceived Intelligence confirm this obser-
vation. Under the alternative hypothesis that the interaction-
enabled system performs better, significant changes were re-
ported in two individual questions for Likeability (U =46.5, p-
value ~ 0.04 & U = 39, p-value ~ 0.01) and also two ques-
tions for Perceived Intelligence (U = 52, p-value ~ 0.08 &
U =49, p-value ~ 0.05). For Perceived Safety, while signif-
icant changes could only be found on combinations of ques-
tions and not on every individual question, a strong implication
can be derived (U = 102, p-value =~ 0.16) under the alternative
hypothesis that the interactive system performs worse. This
suggests that the baseline system seemed safer to use to the
participants.

UTAUT Dimension 0? | DoF | p-value
Performance Expectancy | 4.4579 | 5 0.485
Effort Expectancy 5.9265 5 0.313
Social Acceptance 13.4710 5 0.019
Facilitating Condition 4.3774 5 0.496

Table 4: Test results for the Mann-Whitney U test on the
UTAUT Questionnaire.

The trend analysis on UTAUT evaluations (Figure 7) reveals a
higher rating for the baseline system than the interactive one.

Baseline Condition
5t Interaction Condition e

3 r _
2 r _
1F _
0

PE EE Sl FC

Figure 7: Comparison of average values and trend analysis for
the UTAUT Questionnaire including 95% confidence interval.
PE: Performance Expectancy, EE: Effort Expectancy, SI: Social Influence,
FC: Facilitating Conditions

Test statistics for each dimension of UTAUT evaluation are
reported in Table 4 with one significant difference detected
on the Social Influence dimension. Post hoc analysis for each
individual question in Social Influence under the alternative
hypothesis that the interactive system has less influence on the
participant, results in evidence for three out of five possible
changes (U = 124, p-value ~ 0.05, U = 122, p-value ~ 0.06
& U =125.5, p-value = 0.04).
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Figure 8: Comparison of average values and trend analysis for
the MISC Questionnaire including 95% confidence interval.
ATTI: Pay Attention, ATT2: Keep Engaged, REM1: Remember, REM2:
Remember Next Time, REM3: Remembering Confidence

The same analysis was done for the MISC questionnaire, al-
though for this questionnaire, only the univariate Wilcoxon test
was carried out since each dimension of MISC contained only
one question. The results (Table 5) validated the pilot analy-
sis with all the measured attributes of the interactive system
rated higher by the participants (Figure 8). All measurements



MISC Dimension U | p-value
Pay Attention 335 0.002
Keep Engaged 35.5 0.002

Remember 42.5 0.025

Remember Next Time | 37.5 0.013
Confidence remembering | 33.0 0.003

Table 5: Test results for the univarite one-sided Wilcoxon-
Mann-Whitney U test on the MISC Questionnaire. The alter-
native hypothesis being the new system is better.

achieved statistical significance and hint that the system with
the interaction module met all functional requirements.

DISCUSSION

The primary objective of this study is to measure how an
agent’s capability to model personalised interactions affects
its acceptability and perceived intelligence for humans. The
interactive system is assigned two principal tasks: interacting
with users gathering information about them and transitioning
its capabilities to the object learning baseline system. Both
functional and perceptual changes of the interactive system
are evaluated based on the responses from users on three ques-
tionnaires. GODSPEED measures the users’ perception of
the robotic system, UTAUT evaluates the users’ acceptance
of technology, and MISC consists of five additional questions
measuring the functional aspects of the system. Overall, re-
sults from all questionnaires reflect significant differences in
the users’ awareness towards the two systems. The realisation
of functional aspects in all measured dimensions of MISC indi-
cates a major improvement of the interaction-equipped system
in keeping the users engaged and remembering their informa-
tion across interaction sessions. These functional changes, in
turn, lead to perceptual changes in the users which are reflected
in the results of GODSPEED and UTAUT questionnaires. For
GODSPEED, evidence for Likeability and Intelligence imply
a positive development in humans’ perception of the object
learning scenario without having to improve any aspect of
the learning task itself. However, the interactive system also
appears to be less safe as indicated by the shift in Perceived
Safety in favour of the baseline system. This observation is
reflected in both the direction of the tests and the trend analysis
(Figure 6). This can be attributed to the fact that the interactive
system, in essence, models much more complex interactions
with the user which could evoke some reservations in the mind
of the user [21].

For UTAUT, both statistical tests and trend analysis detect a
drop in the evaluation of Social Influence. An explanation for
this could be the Acquiescence Bias effect [43] which would
mean that the users who were assigned to the baseline sys-
tem had very limited interaction with the robot and thus, they
might have been biased to give a high rating to the baseline
system. Also, even though the participants rate the interactive
system as more intelligent and likeable, they would not recom-
mend using it in a real-world context. This could be due to the
longer and more complex interactive sessions and the noisy
environment. This can be compared to a similar situation [17]
where the quality of dialogues of the system was considerably
affected by the speech recognition module and users had to

repeat their responses on multiple occasions. Consequently,
the whole system was considered undesirable to operate in a
real-life context. Another aspect that could account for the
low acceptance on Social Influence is the domain of conversa-
tions. Different states of the conversation are detected by the
Named Entity Recognition component, which is in turn built
and evaluated based on the training data set of the Conference
on Natural Language Learning (CoNLL) [37]. While this ap-
proach enables an automatic method to measure the isolated
module to the state-of-the-art approach, its domain is limited
to the three main categories of the CoNLL challenges: Person
(PER), Organisation (ORG) and Location (LOC). In order to
slightly increase the range of possible topics, two more cate-
gories have been added (food and drinks), given that the toy
objects to be learnt included a melon and a doughnut. How-
ever, the total number of possible topics is still considerably
low.

In general, this study endorses the reliability of GODSPEED
and UTAUT questionnaires for similar studies measuring the
social impact of robotic systems. A homogeneity in statistical
results of all questions in the same dimension is witnessed:
no two questions in the same significant dimension reflect
different shift directions. More importantly, the fact that multi-
variate Mann-Whitney U tests are able to detect significances
and confirm the trend analyses, indicates that multivariate non-
parametric tests should take higher priority in similar analyses.

CONCLUSION

This study described an experiment to investigate the impact of
personalised interaction capabilities of the NICO robot on how
the users perceive it in terms of intelligence and sociability. A
baseline system which is capable of learning objects through
natural language interaction was compared to a system with
added interaction capabilities [31]. The results from the user
study show that participants perceived NICO to be more in-
telligent and likeable when it involved them in personalised
conversations. This is an important attribute to possess for
agents that are designed to work in close human proximity,
particularly in home scenarios working with children or the
elderly (see Section 1 - 2). It would allow the robots to be
accepted as an integral part of the home, they are designed to
serve. Despite the overwhelmingly positive impressions of the
interactive NICOQ, it is perceived to be less safe and perhaps
because of this reason, has a weaker social influence on the
participants. It would be important to further investigate these
factors in order to improve the interaction capabilities of the
robot although the study tries to explain some of the possible
causes. Overall, the study presents evidence for improved
impressions of the robot for the users when it is able to model
personalised and engaging conversations with them.
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