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Abstract—In developmental robotics, we model cognitive pro-
cesses, such as body motion or language processing, and study
them in natural real-world conditions. Naturally, these sequential
processes inherently occur on different continuous timescales.
Similar as our brain can cope with them by hierarchical abstrac-
tion and coupling of different processing modes, computational
recurrent neural models need to be capable of adapting to tem-
porally different characteristics of sensorimotor information. In
this paper, we propose adaptive and variational mechanisms that
can tune the timescales in Continuous Time Recurrent Neural
Networks (CTRNNs) to the characteristics of the data. We study
these mechanisms in both synthetic and natural sequential tasks
to contribute to a deeper understanding of how the networks
develop multiple timescales and represent inherent periodicities
and fluctuations. Our findings include that our Adaptive CTRNN
(ACTRNN) model self-organises timescales towards both repre-
senting short-term dependencies and modulating representations
based on long-term dependencies during end-to-end learning.

Index Terms—timescales, recurrent neural networks, cognitive
modelling, neuro modulation

I. INTRODUCTION

Recurrent Neural Networks (RNNs) are of high interest
because of both the appeal for neuro-cognitive modelling and
the emerging opportunities in machine learning. Since the
success of deep learning, considerable computing power, large
datasets, and efficient training algorithms have provided key
breakthroughs and solutions for processing sequences such as
in speech recognition and language understanding [1], [2].
In cognitive modelling, recurrent architectures are a building
block for theoretical models that are biologically plausible
regarding mechanisms in the brain, which enable humans
for doing the same tasks. Although both disciplines differ
notably in their goals and made assumptions, they offer great
chances for one and another. For example, neural networks
that include gating or clocking mechanisms, such as the Gated
Recurrent Unit (GRU) and the Clockwork RNN, can learn
difficult latent regularities in sequences that may be caused
by excitatory and inhibitory neurotransmitters in the brain [3],
[4]. Furthermore, specific characteristics of the arguably most
powerful RNN – the brain – may motivate further development
for machine learning applications. Important recent theories
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include neural oscillations, multiple timescales in hierarchical
processing streams, and a highly complex interplay of neural
populations and local integrations by mode coupling [5]–[7].

In developmental robotics, we are interested in building re-
alistic cognitive models and testing them in natural conditions
on robotics platforms [8], [9]. Here, the most important focus
is to capture the mechanisms in the brain in the most plausible
and at the same time the simplest feasible form, in order to
establish an insightful but also epistemic real-word experi-
ment. A specific current development in this field concerns
capturing temporal fluctuation patterns in sequences which are
both observed in the brain and possible to measure for complex
sequential tasks such as language modelling and multi-modal
integration. Architectures from cognitive modelling such as
the Stochastic Continuous Time RNN (S-CTRNN) and the
Variational Bayes Predictive RNN (VBP-RNN) propose to
integrate variations in internal activation states in order to
capture variances in the processed sequential patterns [10],
[11]. These are interesting candidates for studying the interplay
of large-scale and small-scale dynamics as well as coupling
modes in a simulation. In machine learning, models such as
the Phased LSTM, Dilated RNNs, or Hierarchical Multiscale
RNN suggest to include rhythmic periodicity or boundaries in
order to learn latent frequencies that may underlie sequential
patterns [12]–[14]. There, the concept of external neural os-
cillations is adopted in the broadest sense for governing the
internal rhythms in the network, which leads to interesting
transformation and structuring mechanisms that in turn are
valuable for difficult tasks.

In this paper, we aim at bringing both research efforts
closer together and propose adaptive and variational timescale
mechanisms that can learn to predict or recognise temporal
patterns, which include latent regularities. Specifically, we
suggest both to adapt timescales in CTRNNs automatically and
to allow them to fluctuate. Our architecture is directly inspired
by the brain’s adoption of oscillating patterns, the inherent
interplay of coupled timescale modes, and the dynamic tuning
to the sensorimotor information during learning sequential
tasks. We study our mechanism on various small- and larger-
scale tasks with a strong focus on investigating the dynamics
during development and the links to cognitive systems.
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II. MODEL DESCRIPTION

We model our computational architecture as a variant of
the CTRNN because of its universality in modelling. The
activation y of CTRNN units is defined as follows:

yt = f (zt) , (1)

zt =

(
1− ∆t

τ

)
zt−∆t +

∆t

τ
(Wx + Vyt−∆t + b) , (2)

for inputs x, previous internal states zt−∆t, weights W and
V, bias b, and an activation function f . The timescale can
be a pre-determined common parameter τ for all units or
a vector τ of individual constants. In tasks with discrete
numbers of time steps, the CTRNN can get employed as a
discrete model, e.g. by setting ∆t = 1. Although we can
derive the CTRNN from the leaky integrate-and-fire model and
thus from a simplification of the Hodgkin-Huxley model from
1952, the network architecture was suggested independently
by Hopfield and Tank in 1986 as a nonlinear graded-response
neural network and by Doya and Yoshizawa in 1989 as an
adaptive neural oscillator [15], [16].

Overall, the CTRNN can be understood as a generalisation
of the Hopfield Network [17] with continuous firing rates and
arbitrary leakage in terms of time constants. More specifically,
compared to the Simple Recurrent Network (SRN, or Elman
Network), the timescale τ (or τ) is an additional hyperparame-
ter of asymptotically not leaking, thus a neuron might maintain
part of its information for a longer time. This parameter pro-
vides an interesting mechanism to capture sequential aspects
on different timescales or periodicities and is particularly cru-
cial for the hierarchical abstraction capability of the Multiple
Timescale Recurrent Neural Network (MTRNNs [18]). In the
MTRNN, however, the hyperparameter needs to be chosen
carefully, based on a priori known temporal characteristics
of the data, which is usually done in coarse approximation
on layer or module level. In contrast, time constants in the
brain are subjects to change during development and are
hypothesised to be directly related to temporal structures [19].

In our model, we propose two novel mechanisms to obtain
an adaptive and variational timescale for each neuron. First,
the timescales are governed by learnable weights t that work
like a bias on the timescale instead on the activation:

τt = τA
t = 1 + et+τ0 , (3)

where the exponential function ensures timescales in [1,∞],
and the vector τ0 can be defined as sensible initial values
for the timescales in case of the weights t getting initialised
around zero. We call a model, using this adaptive timescale,
an ACTRNN. Second, the timescales are sampled from a
Gaussian normal distribution N based on given mean τ0 and
a vector of variance values σ0 = [0 . . . τ0−1

2 ]:

τt = τV
t ∼ N (τ0,σ0) , (4)

where τ0 is a hyperparameter, set before training. Models
using this variational mechanism are called VCTRNN hence-
forth. In order to finally combine both mechanisms in a model
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Fig. 1: Characteristics of hidden activations in adaptive and
variational CTRNN layers: Since the timescale τ determines
how activation is derived as an integration of previous activa-
tion yt−∆t and input x (see Eqn. 2), a larger variance σ leads
to a different ratio between these, based on time step level
sampling (dark grey: kept previous activation; white: input
activation: light grey: uncertain ratio of both). The example
shows m modules with increasing initial timescales.

called AVCTRNN, we also introduce learnable weights s that
steer the strength of the variance directly:

τt = τAV
t = 1+et+τ0 +τσ , τσ ∼ N (0, s + σ0) . (5)

Fig. 1 illustrates how the adaptive and variational timescale
characterise the hidden activations of a CTRNN layer. Larger
t lead to stronger influence by previous activation and larger
s to stronger variance on time step level. For comparison with
the CTRNN, we can define the τ0 values in a way that parts
of the layer group into modules because they share the same
timescale. For example, such a layer with dense connectivity
could have m = 3 modules with n = 100 neurons each,
set to initial timescales 1, 2, and 4. Note, in this paper, such
a module structure is considered horizontally only. Stacking
layers vertically, as done in the aforementioned MTRNNs in
order to impose hierarchical composition/decomposition, is
possible and opens up further future studies.

Since the new network parameters t and s are fully dif-
ferentiable1, we can train them together with the weights
and biases in any end-to-end training fashion2, but need to
make sure to clip the values of τ in [1,∞]. From the formal
description (Eqn. 3–5), we can see that there is no actual need
for specifying τ0 and σ0 and thus the notion of modules
in the case of ACTRNNs and AVCTRNNs. However, this
might be sensible for practical reasons, such as cutting training
time because of a priori knowledge about the task or keeping
the networks more comparable to the baseline, e.g. when
comparing pre-determined initial timescales.

1Note, s defines the range of the sampling but not the sampling itself.
2Here, we can use any deterministic method, such as gradient descent (or

arbitrary accelerated, adaptive, and regularising methods), based on suitable
representations for the task as well as transfer and respective error functions.
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III. EVALUATION AND RESULTS

In order to study our adaptive and variational timescale
mechanisms, we ran tests on small baseline and more complex
real-world tasks for both classification and prediction. The
most interesting insight beyond the effect of the dynamic
timescales in terms of performance is the adaptation and varia-
tion itself. In all tasks, we compared the ACTRNN, VCTRNN,
and AVCTRNN variants against the CTRNN baseline as well
as the SRN and the Long-Short Term Memory (LSTM [20]).
For all setups, the hyperparameters have been optimised in-
dependently along learning parameters and methods, numbers
and sizes of modules, and initial or fixed timescales (CTRNN
case), but deliberately training in unregularised fashions3. Our
initial hypothesis was that the novel CTRNN variants will per-
form at least equal to a perfectly optimised CTRNN, without
the need of optimising the timescales in hyperparameter space,
significantly better than the SRN, and on par with the LSTM.

A. Experiment 1: Sequential MNIST Classification

In the first task, we compared all networks on the sequential
MNIST test for classification. We found accuracy results as
presented in TABLE I, showing that the task can get easily
solved by all networks and that the novel CTRNN variants
perform equally: neither significantly better nor worse than
the baseline. The best networks comprised a hidden layer
partitioned into four modules with timescales (1, 3, 9, 27).

TABLE I: Test accuracy for seq. MNIST classification (in %).

SRN CTRNN ACTRNN VCTRNN AVCTRNN LSTM

96.34 97.17 97.77 97.48 97.96 98.83

B. Experiment 2: Synthetic Sine Wave Prediction

In this second task, we were interested in how the CTRNN
variants can capture the periodicities of some simple sine
waves, instead of just remembering a whole set of sequences.
Thus, we defined five training and three complementary test
sines as a summation of sines with four different periods π/0.25,
π/0.5, π/1.0, and π/4.0 over a course of 200 time steps. For
the test sequences, the networks only see the first 50 time
steps as an input and receive for the remainder their output
prediction in a closed loop instead. The resulting predictions
are presented in Fig. 2 for all networks. All networks can easily
learn the regularities of sines with different periods and show
only consistent minor shortcomings in fitting short periods
perfectly. Thus, overall the CTRNN variants can solve this
task equally well for the optimised cases with module sizes
of (32, 16, 8, 4) and timescales4 around (1, 3, 9, 27).

The development of the adaptive timescales is presented
epoch-wise for the ACTRNN and in Cumulative Distribution

3All particularly interesting hyperparameters are included in the follow-
ing sections, while the reference implementations are available on GitHub:
https://github.com/heinrichst/ACTRNN .

4Note: The timescales relate to the periods, with respect to timesteps in the
sequence, and are only fixed for the CTRNN and VCTRNN.

Fig. 2: Predicted sine waves versus targets of different periods.
Vertical bar indicates first time step of closed loop prediction.

(a) ACTRNN: τ during training. (b) Final τ CDF.

(c) AVCTRNN: σ during training. (d) Final σ CDF.

Fig. 3: Timescale τ development (top) and variance σ devel-
opment (bottom) in the sine wave prediction task: adaptation
during training (left) and distribution after training (right).

Function (CDF) form for comparing the adaptive CTRNN
variants in Fig. 3a–b. This shows that in the ACTRNN,
timescales are mostly kept around values that work best for
the baseline CTRNN, but also small deviations around these
attractors are developed. The variance σ in the AVCTRNN
(Fig. 3c–d) surprisingly develops on a rather small scale, as
for neurons with a small timescale, a tiny variance emerges
in the first epoch, but nearly vanishes during training, while
the variance for neurons with larger timescales also changes
only slightly. This indicates that for such a simple task, the
network does not learn, whether noisy activations facilitate or
disturb the prediction.

C. Experiment 3: Human Motion Patterns Prediction

With the third task, we aimed at investigating how the
CTRNN variants learn to capture the probabilistic peri-
odic fluctuations in human-generated hand motion sequences.
These motion sequences have been recorded as concatenations
of three prototypical patterns (each standing for a symbol A, B,
or C) during the study on VBP-RNN by Ahmadi and Tani [11].
Over 400 time steps, these symbols repeat with differing
period lengths and form reoccurring word-like patterns.
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Since the test data contains complementary combinations of
the symbols, the networks must be able to learn patterns on
both short and long timescales. All predictions and the target
patterns for the first sequence of the test data (closed loop from
time step 200 onwards) are presented in Fig. 5a. Predicting the
correct pattern fluctuations for time steps 230 onwards is rather
difficult because no information of this pattern combination is
given in the training data or via the initial state of the network.
Thus, we observe how the SRN (and to some degree also
the LSTM) seems to repeat oscillations with periods that it
has often seen during training, while the CTRNN variants try
to predict the most plausible symbol-fluctuation pattern (in
this sequence inaccurate, but in itself correct). The Network
with the adaptive timescale (ACTRNN) is additionally more
precise in predicting the short periods, which indicates that
it is better tuned to these fluctuations as well. However, the
network with the fixed variations (VCTRNN) predicts with
more extreme deviations in the case of a perturbing pattern
around step 250, indicating that it might have forgotten some
longer-term dependencies between the patterns that represent
our symbols. From the hidden activations in Fig. 5b, we can
obtain that neurons with smaller timescales, but at the same
time nearly zero variance, show highly dynamic activations
during these time steps, while neurons with larger timescales
change from continuous activation to shorter bursts.

From the development of the adaptive timescales as pre-
sented in Fig. 4, we can confirm our previous observations.
For this more difficult task, which nevertheless shows rhythmic
patterns, we can find timescales in the ACTRNN that are sim-
ilar to the values of the best tuned CTRNN (in this case with
(1, 5, 25, 125)), with notable deviations of larger timescales.
The variance σ, however, has seemingly dropped for smaller
timescales and only stayed high for larger ones. Overall, this
indicates that it might be beneficial to adapt individual neurons
in leaking less or stronger, but that variances in timescales
seem to be difficult to handle by the network.

(a) ACTRNN: τ during training. (b) Final τ CDF.

(c) AVCTRNN: σ during training. (d) Final σ CDF.

Fig. 4: Timescale τ development (top) and variance σ devel-
opment (bottom) in the motion patterns prediction task.

(a) Plots of predicted patterns (targets in black and grey).

(b) Hidden activation (top: ACTRNN, bottom: AVCTRNN).

Fig. 5: Representative plot of predicted motion patterns se-
quence versus the target and corresponding hidden activation
in relation to timescales τ or variance σ over 60 hidden units.
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TABLE II: Test perplexity (PPL) on Penn TreeBank.

SRN CTRNN ACTRNN VCTRNN AVCTRNN LSTM

118.30 113.61 113.02 113.60 113.26 116.61

D. Experiment 4: Penn TreeBank Language Modelling

For the fourth task, we evaluated how the networks perform
on a small but well-known real-world task: language modelling
on the Penn TreeBank corpus. Here, we were interested in how
the CTRNN variants are reflecting the short-term dependencies
(next words) or long-term dependencies (clause semantics) of
the data. We focused on the most common setup, having 82K
tokens of test data, a vocabulary size of 10k, using hidden
layers of small size (in our case around 1400 neurons, leading
to < 2M parameters), and training unregularised [21]. The
word-level test perplexity is presented in TABLE II, indicating
comparable results between the CTRNN variants (timescales:
(1, 2, 4, 8)) and significant improvements over the basic LSTM
(fair hyperparameter search, no peepholes) and the SRN.

From inspecting the hidden activation during a test run
on a word sequence (see Fig. 7) we can learn that units
with small timescales activate with strong dynamics and small
sparsity, supposedly to activate word vectors. Units with higher

Fig. 6: Hidden activation in relation to timescales τ or vari-
ances σ for the PTB task on the first 35 test data words over
1,300 hidden units: ACTRNN (top) and AVCTRNN (bottom).

timescales, however, remain active for longer times but also
change activation rapidly when the meaning of the sentence
gets drastically ambiguous, for example, if a subordinate
clause starts or ends (for instances in step 13 and 26). It seems
that the slow units of the network learn to contribute longer
time dependency and by this modulate the faster units. When
comparing ACTRNN and AVCTRNN, we cannot identify
remarkable differences between activations sorted by timescale
or sorted by variance σ. On the contrary, similar to our
observations in the previous task, high timescales seem to
correlate strongly with higher variance values, which appear
to contribute little to changes in the modulation of faster units.

In tracing the hidden activation correlated to timescale
values (see Fig. 6) we can confirm that faster units activate
chaotically while slower units show continuous activation
patterns for shorter and longer parts of the sequence. Although
these traces are already visible in the CTRNN, activations in
the ACTRNN self-organise during development to quite dif-
ferent patterns. Units on timescale τ = 1 fluctuate constantly,
are activated sporadically on timescale 2–3, and remain active
on timescale 6–10 for specific parts of the sequence. In the test
data, sentences usually have on average 20 words, but since
many sentences contain embedded clauses, the semantically
dependent phrases are on average 8 words long. Thus, com-
paring our observations with the data, it seems plausible that
slower units learn the semantics of these clauses, while the
units on timescales 2–3 perhaps capture shorter N -grams.

Fig. 7: Traces of hidden activation with respect to the devel-
oped timescales τ on the first 35 words of the Penn TreeBank
task: CTRNN (top) and ACTRNN (bottom).
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IV. DISCUSSION

Timescales in recurrent networks can be modelled to be
adaptive and variational. Based on fully differentiable dynamic
modifications, an adaptive and variational CTRNN can tune
the timescales automatically during development towards the
long-term and short-term characteristics underlying the data.
In our tests, this was particularly visible for more difficult tasks
that nevertheless show rhythmic patterns on certain timescales,
where we need to tune a baseline CTRNN to timescales using
expert knowledge and intensive hyperparameter optimisation.
In sequence prediction tasks such as for motion, the ACTRNN
and AVCTRNN networks converged to similar timescale set-
tings but were able to cope with subtle differences in fluc-
tuations better by developing functional nodes that contribute
with slightly different leakage of information and thus differ-
ent periodicity. Classification tasks like language modelling
revealed that our CTRNN variants, in fact, can self-organise
their temporal sensitivity so that a developed network activates
a broad range of differently slow temporal dynamic nodes in
conjunction with many fast-forgetting nodes. This indicates
that a tight coupling of nodes which mainly modulate activity
and nodes which encode perceptual characteristics might be a
natural result of mechanisms such as our proposed adaptation.
To our surprise, however, positive effects of variations – or
noise – on timescale level were evident rather for classification
tasks only, while positive effects of adaptive but deterministic
timescales were mostly visible in prediction tasks. A limitation
of our approach could be the focus on deterministic error
functions, instead of including a true variational inference by
means of maximising the evidence lower bound of temporal
fluctuations as it is done in VAEs or VBP-RNNs [11], [22].
Further studies, therefore, could explore our mechanisms in
setups that include modelling a variational component, which
adopts chaotic perturbations, as well.

Overall, nevertheless, compared to other successful recent
mechanisms from machine learning [12]–[14], automatically
tuning the timescales is achieved in our approach by a
comparably simple modification of the generally bio-plausible
CTRNN. In our view, this allows for a range of interesting
studies within the developmental robotics community, par-
ticularly towards investigating embodied language process-
ing [8], [9]. As a first example, this includes hierarchical
abstraction from temporally dynamic natural observations such
as motion patterns or audio information, where the differing
timescales carry structuring information. A second example
concerns multi-modal integration and representation formation
in human-robot interaction scenarios, where streams on differ-
ent timescales contain complementary sensorimotor informa-
tion about common aspects or events. By these means, we
can further elaborate representation formation and functional
aspects of timescale dynamics as well as activity coupling in
both simulation and robotic real-word experiments.
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