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Abstract
In contrast to many established emotion recognition systems, convolutional neural networks do not rely on handcrafted

features to categorize emotions. Although achieving state-of-the-art performances, it is still not fully understood what these

networks learn and how the learned representations correlate with the emotional characteristics of speech. The aim of this

work is to contribute to a deeper understanding of the acoustic and prosodic features that are relevant for the perception of

emotional states. Firstly, an artificial deep neural network architecture is proposed that learns the auditory features directly

from the raw and unprocessed speech signal. Secondly, we introduce two novel methods for the analysis of the implicitly

learned representations based on data-driven and network-driven visualization techniques. Using these methods, we

identify how the network categorizes an audio signal as a two-dimensional representation of emotions, namely valence and

arousal. The proposed approach is a general method to enable a deeper analysis and understanding of the most relevant

representations to perceive emotional expressions in speech.

Keywords Auditory emotion categorization � Affect analysis � Dimensional emotions � Deep neural network

1 Introduction

Perceiving and expressing emotions are key elements of

natural communication. Constantly, humans relate to each

other by conveying their emotional states and by reacting

according to the perceived emotions [46]. Weninger

et al. [64] claim that one of the most important factors in

human communication is the emotional expression in

sound. Using speech, humans transmit affective informa-

tion implicitly via acoustic messages as well as explicitly

via linguistic messages [42].

A speech emotion recognition system typically consists

of a feature extracting method, which identifies the most

relevant representations of the audio data, and a classifier,

which identifies the emotion perceived in the correspond-

ing speech utterance. There is evidence that a well-chosen

selection of features improves the classification accuracy in

emotion recognition tasks [16, 52].

Despite the fact that there exists a large amount of lit-

erature that relates handcrafted acoustic and prosodic fea-

tures in speech to emotional states, e.g., [10, 52], it is not

yet fully understood which features are most relevant to

express emotional states [55]. The findings vary in emotion

definitions, emotion categories, and the extracted acoustic

features. Additionally, there exist some contradictory

findings on the most influential acoustic features for emo-

tional expressions [10]. This makes it difficult to select

appropriate features for an emotion classification task.

Many emotion recognition systems currently extract a

large amount of handcrafted acoustic and prosodic features

that have originally been designed for speech recognition

tasks [7, 47]. Although successful in constrained emotion

recognition scenarios, such models are not scalable and fail

when applied to real-world-related tasks [49]. Furthermore,
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it has been shown that the most relevant features for

acoustic emotion recognition depend on the used dataset,

classifier, and emotional representations [36].

The problem, commonly found in many approaches in

the area of emotion representations, is that researchers

often consider emotions as discrete categories, such as

anger or fear [10, 15]. However, this limits the number of

possible emotional states that can be described. To allow a

more flexible interpretation of emotional states, a dimen-

sional representation of emotions can be used. A dimen-

sional model offers a more fine-grained sentiment

representation by describing emotional expressions with

continuous values of various dimensions. The most com-

mon used dimensions are the two dimensions: valence and

arousal. Valence is described by the pleasantness of a

stimulus and represents the positive and negative feelings

of a speaker, while arousal refers to the amount of energy

used to express a specific emotion. Thus, arousal captures

how reactive the subject is to a stimulus. Anger, for

example, is represented by a rather high arousal and low

valence. This two-dimensional model has become well-

accepted [20], as it allows the distinction between

describing the speech signal and associating it with dif-

ferent emotional states.

Besides emotion representation, another important

challenge in the field of affective computing is the acoustic

description of speech. In the past, several feature extractors

have been proposed to represent auditory signals. Most of

the work on affective computing is using various hand-

crafted descriptors [7, 18]. Despite the fact that hand-

crafted descriptors are commonly used, they might not

represent the emotional characteristics in speech suffi-

ciently and efficiently enough [16]. Instead of using many

handcrafted features, generalization can be increased by

learning auditory representations based on the data distri-

bution. Deep neural networks (DNN) have been proposed

in emotion-related tasks to automatically learn represen-

tations directly from audio signals for certain

tasks [30, 35, 38, 58, 66]. One of the strategies used by the

deep learning community is to bootstrap the learning pro-

cess by using a spectral representation of the audio, usually

with the use of spectrograms or Mel Frequency Cepstral

Coefficients (MFCCs) [11]. Although more robust than the

strictly handcrafted features [30, 67], such spectral repre-

sentation loses important information regarding prosodic

features [22].

One way to not limit how a deep neural network can

learn emotional features is proposed by Trigeorgis

et al. [62]. They suggest an end-to-end learning strategy,

where the network learned to categorize emotions on

unprocessed speech signals. In contrast to feature learning

methods that are based on MFCCs or power spectrograms,

the high resolution of the speech signals in time is

preserved. The outstanding performance of the proposed

network indicates that the detailed information of the raw

and unprocessed audio signal in the time domain might

allow the network to learn new and perhaps even com-

plementary features compared to the handcrafted features

which are used in most emotion recognition systems so far.

Inspired by Trigeorgis et al., recent models also make use

of unprocessed speech signals for emotion recogni-

tion [8, 23, 31]. They were able to achieve state-of-the-art

performance on unconstrained speech emotion recognition

tasks, moving one step closer to applications on real-world

scenarios.

Although presenting impressive performance, most of

the recent solutions lack an explanation on why their model

works. By identifying how their models learn emotional

features would give them the ability to adapt and improve

their solution to be used on more challenging tasks. Tri-

georgis et al. draw a direct comparison between the acti-

vations of their network’s temporal gates and the standard

handcrafted features such as loudness, energy, and pitch. A

deeper analysis of their network would help to provide a

better understanding of their success and extrapolate their

findings to the context of their scenario and the used

dataset. The analysis proposed by Trigeorgis et al. also

would not be useful for other approaches, as their

methodology is highly tailored to be used in their specific

network. All recent solutions would benefit from an inte-

grated analysis methodology that helps to understand and

compare what emotional features have been learned by

each of these solutions. As they can be complementary,

such methodology could be the basis for a better under-

standing of this field and the proposed contributions.

In this paper, we aim to provide a general method that

allows a deeper analysis of the learned acoustic features to

improve the understanding of emotional expressions in

speech. Our proposed architecture consists of a convolu-

tional neural network (CNN) that is trained on raw auditory

data to learn emotional characteristics. Our approach is an

end-to-end learning method based on the approach of

Trigeorgis et al. [62]. This means the network learns to

classify emotions in the two-dimensional representation of

valence and arousal directly from raw auditory informa-

tion. To evaluate our model, we provide a comparison with

state-of-the-art implementations for acoustic emotion

recognition by using the interactive emotional dyadic

motion capture (IEMOCAP) dataset. Moreover, we intro-

duce two novel visualization methods that allow an inter-

pretation of what our model has learned, i.e., how our

model represents emotional characteristics from auditory

information. Finally, we discuss how the network learns to

identify arousal and valence on speech signals and how this

is related to the fields of phonetics and descriptive

linguistics.
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2 Proposed method

The approach of this work is to implicitly learn acoustic

and prosodic features directly from the raw audio signal

and analyze the learned representations. The hypothesis is

that this will increase the understanding of the features that

influence the perception of emotional expressions in speech

most.

In order to test this hypothesis, an architecture is pro-

posed that consists of a convolutional neural network

(CNN) to automatically learn the characteristic represen-

tations directly from the raw audio data. To analyze and

understand the network’s learned representations, two dif-

ferent methods have been applied: a performance com-

parison and several visualization techniques. The

performance of the proposed network is compared to the

following three approaches: First, state-of-the-art hand-

crafted features will be added to the architecture to

investigate if this increases the performance. This might

give some insight on whether the extracted features of the

CNN on the raw audio signal complement other classical

features. Second, feature learning is applied to the com-

monly used MFCCs only. This might show if the time

resolution in the raw waveform carries important infor-

mation that is discarded in the MFCC representation.

Third, a multi-layer perceptron (MLP) is trained only on

commonly used handcrafted acoustic features to evaluate

the performance of the CNN in contrast to classical

approaches.

Moreover, techniques have been adopted to analyze the

learned representations of raw audio data. This analysis

will provide insights on the most salient auditory repre-

sentations of speech that are learned by the CNN to predict

vocal emotional expressions.

2.1 End-to-end learning network

Representation learning, also referred to as feature learn-

ing, allows to automatically extract and organize discrim-

inative information from data. The term end-to-end

learning emphasizes that a system learns all parameters

from raw and unprocessed data to predict the final output in

one processing step [44]. This includes that the system

does not require any explicit feature extraction methods,

but automatically learns the internal representations

required for the processing task. As an end-to-end learning

method removes the need for the explicit design of clas-

sical features or selection methods, it also decreases the

prior knowledge and engineering effort required to solve a

problem.

Therefore, the proposed architecture uses end-to-end

learning to automatically identify salient representations in

audio signals for emotion-related tasks. By training the

network on raw audio data, it might even learn new and

unexplored auditory features. In the following, the pro-

posed end-to-end learning architecture will be referred to

as ELoR network (end-to-end learning on raw audio).

2.1.1 Architecture

The ELoR network should provide a feature extraction

method that is capable of extracting higher-level repre-

sentations of the input signal and a classifier that predicts

the emotional state expressed in the input signal.

For the feature extraction, supervised training of a

CNN [39] will be used to provide a generalized model that

is capable of learning relevant acoustic features. Since their

introduction by LeCun et al. [40] in 1989, CNNs have

shown outstanding performance on various tasks, such as

handwritten digit classification [41] and image classifica-

tion [9, 37]. CNNs are feedforward artificial neural net-

works that are inspired by the locally sensitive orientation-

selective cells of the primary visual cortex [32]. A CNN

consists of two alternating types of layers: convolutional

layers and pooling layers. Figure 1 illustrates the basic

principles of the convolutional and pooling layers of a

CNN.

The convolutional layers use convolution operations on

local receptive fields by using filters to extract higher-level

features. In Fig. 1, three filters with the size of 3� 3 are

used for the first convolutional layer. The values of the

filters are convolved with the original matrix, which means

they are multiplied element-wise on the original matrix and

summed up. To get a full feature map of a convolutional

layer, the filter corresponding to that feature map (illus-

trated by the colors red, green, and orange, respectively) is

slid over the complete input matrix. Then, for the second

convolutional layer, the input volume has increased from

one input matrix to three input matrices that correspond to

the number of maps obtained in the previous convolutional

layer. To generate each of the five feature maps, the sum of

convolutions for each filter per input feature map is taken

(illustrated, for example, in Fig. 1 in blue).

The activation ak;i of one unit, also referred to as neuron,

at (x, y) of the i-th feature map within the k-th layer can be

described by

ak;iðx; yÞ ¼ f bk;i þ
XNðk�1Þ

j¼1

ðwk;i;j � aðk�1Þ;jÞðx; yÞ
 !

; ð1Þ

where bk;i represents the shared bias for the i-th feature

map of the k-th layer. Nðk�1Þ is the number of input

matrices in the layer k � 1. The shared weight matrix wk;i;j

of the i-th feature map in the k-th layer with a size of H � L

is to be convolved with the input matrix j. The activation
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function f used with CNNs is typically a rectified linear unit

(ReLU) function, defined by f ðxÞ ¼ maxð0; xÞ [25]. It has
been shown that the ReLU function increases the conver-

gence of stochastic gradient descent compared to other

commonly used activation functions, such as the sigmoid

function [37], due to their non-saturating characteristic.

The pooling layer uses a downscaling operation to

reduce the spatial size of the feature maps generated by the

convolution layer. By downscaling the feature maps, they

also become less sensitive to specific locations of structures

within the input signals. The most common downscaling

function is max-pooling. For max-pooling, only the maxi-

mum activation of the local receptive field is passed to the

next layer. In Fig. 1 the used pooling size is 2� 2.

By learning only the shared weights (filters) per layer,

CNNs greatly reduce the parameters that need to be

learned. Moreover, CNNs are able to learn representations

from spatial invariant low-level features. Due to their four

main concepts of local receptive fields, shared weights,

pooling operations and usage of many layers, CNNs are

capable of learning appropriate feature extractors based on

‘‘raw’’ inputs in a supervised manner with backpropaga-

tion [39]. This will enable generalization capabilities and

allow to automatically learn the best feature set in the

context of emotional expressions.

The basic concept of the implemented ELoR network is

shown in Fig. 2. The CNN part of the ELoR network

consists of 6 layers in total. For the three convolutional

layers, one-dimensional filters are applied to the discrete-

time waveform x(t) with a stride of 1. For all three pooling

layers, max-pooling is applied to the feature maps gener-

ated by the corresponding convolutional layers. It has been

shown that max-pooling performs best for feature extrac-

tion with CNNs on raw audio data [51]. After each com-

bination of convolution and pooling layer, the nonlinear

activation function ReLU is used, which is suggested to be

analogous to a process in the human ear [62].

For weight initialization in these layers, a normalized

initialization, also referred to as Xavier’s initializa-

tion [24], is applied. As suggested by He et al. [28], a

minor adaptation of the normalized initialization is addi-

tionally made to address the special characteristic of the

ReLU activation function, which is zero for half of its

input. Additionally, batch normalization [33] is used for

regularization of the network. By normalizing the output of

a convolutional layer, the number of required training steps

can be decreased [33].

For classification, fully connected dense layers or multi-

layer-perceptron (MLP) layers will be used. Nummenmaa

et al. [46] found some indications that different areas of the

human brain are activated when perceiving valence and

arousal in language. It seems that arousal is more corre-

lated with the auditory cortices, Broca’s area, thalamus,

and amygdala, while valence is more correlated with the

lateral frontal and orbitofrontal cortices. Therefore, each

emotional dimension is classified separately.

As shown in Fig. 2, for each emotional dimension an

individual MLP is used. Two MLPs are applied to the

output of the CNN to predict the emotional state corre-

sponding to the raw auditory input. Each MLP consists of

two hidden layers. To prevent the network from overfitting,

dropout [29] is utilized on each layer during training. The

activation function for all layers except the output layer is a

sigmoid function. For the layers in the MLPs, the nor-

malized weight initialization is used, as suggested by

Glorot and Bengio [24].

A softmax activation function is applied to each of the

two output layers independently to obtain the output of the

network. Given the input signal x, the softmax function

Fig. 1 Basic principles of a CNN showing a two-dimensional input

matrix, a convolutional layer with 3 filters of the size 3 � 3, a

pooling layer with the size 2 � 2 and a convolutional layer with 5

filters of size 2 � 2. The computation of one exemplary unit of each

feature map is indicated by the colors red, green, orange and blue.

Each color corresponds to one feature map (color figure online)
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calculates the probability distribution of the 5 output

classes yi per emotional dimension by

softmaxðyijxÞ ¼
eyiðxÞ

P5
j¼1 e

yjðxÞ
for i ¼ 1. . .5: ð2Þ

The final prediction of the network is the two output labels

with the maximum probability for each dimension.

The categorical cross-entropy loss has been employed to

compute the gradients during backpropagation. It has been

shown that by using the cross-entropy loss in multi-class

classification problems, a local optimum can be reached

more efficiently compared to the mean squared loss [26].

Additionally, for all layers an L2 weight constraint jjwjj2
was implemented to keep the learned weights small, as

suggested by Hinton et al. [29]. Thus, the final loss func-

tion used in this study is defined by

EðwÞ ¼ �
XN

j¼1

yðxjÞ logðŷðxjÞÞ þ awjjwjj2; ð3Þ

where the hyperparameter aw defines how much the L2 loss

influences the complete loss.

Stochastic gradient descent (SGD) with Nesterov

momentum [45] is used during training, which has been

shown successful for training deep neural networks [3, 61].

To train the complete network, the two MLPs are updated

successively on the same input. First, the loss function for

one label (e.g., arousal) is computed and the weights of the

corresponding MLP and the CNN are adjusted to minimize

the loss. Then, on the updated network the loss for the

second label (now valence) is computed for the same input

to adjust the weights of the second MLP and again the

CNN. To avoid any influence of the order of weight

updates, it is randomly chosen which MLP is updated first.

2.1.2 Input

The input of the ELoR network is raw audio data. By

learning representations directly in the time domain, the

high time resolution of the audio signal is preserved and

might allow extracting more information over time com-

pared to spectrograms. Each sample is represented by a

one-dimensional vector that contains the amplitude of the

signal over time. The samples given to the network need to

be of equal length because the architecture proposed in the

following has a fixed input size.

The best window length still seems to be an open

question [67]. It has been shown that an emotion lasts

around 500ms to 4 s [14]. Moreover, it was claimed that

most researchers focusing on vocal emotional expressions

use windows of speech of approximately 2–6 s [27]. Pol-

lack et al. [48] showed that it is even possible to classify 16

different modes of expressions (e.g., boredom, fear,

uncertainty, and so on) within only 60ms with a recogni-

tion accuracy of � 50%.

Those findings led to the conclusion that an emotional

state is sufficiently represented within a 6 s window of

speech. As longer sequences would exceed the memory

resources during the training phase in the experiments

conducted within this study, each sample will be of 6 s

length. Assuming a sampling rate of 16 kHz the size of an

input array for one sample would be 1� 96;000.

2.1.3 Output

The output of the network is emotional states. They are

represented by the two dimensions valence and arousal.

The annotations in the dataset used for the experiments are

based on five symbols for each dimension. As each

Fig. 2 End-to-end Learning on Raw auditory architecture. The ELoR

network includes the raw auditory input of 6 seconds length, a CNN

for feature extraction with 1D filters, two split MLPs for classification

and 2 9 5 output neurons representing the annotations used in the

dataset. The parameters found by a hyperparameter optimization are

given in italic (see also Sect. 3.3)
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dimension is split into discrete categories, the problem can

be considered as a classification problem instead of a

regression problem. To represent the concepts that have

been used for annotations, the output is modeled by five

output neurons for each dimension, as illustrated in Fig. 2.

The modeled task can be described as a five-class two-label

classification problem. In total, there exist 25 possible

combinations of valence–arousal annotations.

2.2 Architectures for comparison

In order to compare the performance of the ELoR network,

three additional architectures have been implemented.

These architectures share the concept of the ELoR network

but differ in the input representations and the feature

extraction methods. This way a relative performance com-

parison can show whether the learned representations of the

proposed ELoR network are competitive with state-of-the-

art approaches. Moreover, a detailed analysis of the pre-

dictions will give some indications on whether the ELoR

network is capable of learning new and unexplored features.

The additional architectures are called the LoM network

(Learning on MFCCs), which learns the features only

based on MFCC representations, the FTR network (Fea-

TuRes), which uses only handcrafted features to classify an

emotional state, and the ELoR ? FTR network, which

extends the input of the ELoR network by additional

handcrafted features. In the following, only the differences

between each network and the ELoR network are explained

in more detail.

2.2.1 LoM network—feature learning only on MFCCs

The input representations used for the LoM model are the

first 26 MFCCs. They are computed on the 6-s audio

samples with a sampling rate of 16 kHz. By using the

standard window size of 25ms, the commonly used shift of

10ms and a frequency resolution of 1024Hz, the dimen-

sion of the computed MFCC spectrogram is 599� 26. The

network needs to learn the representations of each MFCC

independently to avoid learning correlations among the

coefficients that might not exist [1]. Thus, each of the 26

coefficients is treated as an individual channel in the input

layer (comparable with red, green, blue in visual tasks) and

only one-dimensional filters are used for both convolution

and pooling. Figure 3a illustrates the basic concept of the

LoM network, which is proposed for feature learning based

on MFCC representations only.

The relative performance comparison of the ELoR net-

work and the LoM network is supposed to provide some

indications whether additional or maybe even complemen-

tary representations can be extracted from the audio signal

in the time domain compared to the frequency domain.

2.2.2 FTR network—handcrafted features only

For the FTR network, classic handcrafted features are

manually extracted instead of automatically learned. The

features have been computed from 6 s of a speech signals

with the openSMILE feature extractor [18, 19]. For better

reproducibility and comparability one of the standard

acoustic feature sets presented by Eyben et al. [18] is

chosen. The standard acoustic feature set for the INTER-

SPEECH 2010 Paralinguistics Challenge (IS10), originally

defined by Schuller et al. [56], is a commonly used

benchmark set for vocal emotional expression

tasks [12, 13, 60]. For example, Jin et al. [34] also used

this feature set for emotion recognition on the IEMOCAP

dataset. Based on this acoustic feature set 1582 features are

extracted. For each 6-s input sample, the 1582 features are

extracted and directly fed to the two MLPs for classifica-

tion. Figure 3b illustrates the basic concept of the FTR

network, which is proposed to predict an emotion based on

handcrafted features only.

The relative performance comparison of the ELoR net-

work and the FTR network can show if the ELoR network

is capable of learning representations that are competitive

with state-of-the-art handcrafted features.

2.2.3 ELoR 1 FTR network

The ELoR ? FTR network is a combination of the origi-

nally proposed ELoR network and the FTR network. For

this network, the learned representations of the ELoR

network are extended by the 1582 manually extracted

features, proposed for the FTR network. Figure 3c illus-

trates the basic concept of the ELoR ? FTR network,

allowing a combination of end-to-end feature learning and

manually extracted handcrafted features. Both, the learned

representations of the CNN and the handcrafted features

are fully connected to the two MLPs.

The relative performance comparison of the ELoR net-

work and the ELoR ? FTR network is suggested to indi-

cate whether the implicitly learned features are

complementary to state-of-the-art handcrafted features. If

the combination of the handcrafted features and the learned

representations improves the classification performance,

the learned representations of the ELoR network might

complement the handcrafted features.

2.3 Techniques to analyze learned
representations

To visualize and understand the learned representations of

the trained ELoR network on a higher level of abstraction,

two different visualization methods are applied. This will

provide some insights on the most salient auditory features
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(a)

(b)

(c)

Fig. 3 Architectures for comparison, differing in the input representa-

tions and the feature extraction methods. Parameters found in hyperpa-

rameter optimization are given in italic (compare Sect. 3.3). a Feature

learning only on MFCCs. The LoM network includes the MFCCs

extracted on 6-s samples, a CNN for feature extraction with 1D filters,

split MLPs for classification, and 2 � 5 output neurons. b Handcrafted

features only. The FTR network includes 1582 manually extracted

features on 6-s samples, split MLPs for classification, and 2 � 5 output

neurons. c End-to-end learning with added features. The ELoR ? FTR

network includes the raw audio input of 6-s length, a CNN for feature

extraction with 1D filters, 1582manually extracted features as additional

input for the split MLPs for classification, and 2 � 5 output neurons

Neural Computing and Applications (2020) 32:1007–1022 1013
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that have been implicitly learned for vocal emotional

expressions.

2.3.1 Network-driven visualizations

To achieve an understanding and a visualization of all

learned layers in the CNN, the idea is to obtain a generalized

input signal that maximizes the network’s prediction for a

specific class. This approach has been originally introduced

by Erhan et al. [17]. It can be formulated as an optimization

problem, where a randomly initialized input signal x0 is

updated by maximizing the activations for a specific class

(output neuron) of a trained network with fixed parameters.

Erhan et al. [17] applied this method on deep belief net-

works (DBNs) and stacked denoising autoencoders

(SDAEs) to acquire a first-order representation of a neuron’s

behavior. Simonyan et al. [57] used this visualization tech-

nique also on a CNN for ImageNet classification. However,

instead of using a randomly initialized input, they utilized a

mean image resulting from the training set. Moreover, they

added an L2 regularization term to prevent extreme single-

pixel values and, thus, achieve more naturalistic images.

Given a trained network with fixed weights and biases

and a class of interest, the input can be numerically cal-

culated by a stochastic gradient ascent method. Let ac;k be

the activation of the c-th neuron in the k-th layer, which

represents the class of interest in the output, the generalized

input x� can be calculated by

x� ¼ argmaxx ac;kðxÞ � kjjxjj22
� �

: ð4Þ

This allows a visualization that is independent of a certain

input but also represents the trained network completely.

2.3.2 Data-driven visualizations

For data-driven visualization techniques, the gradient of the

network is computed with respect to a specific input signal.

The obtained so-called saliency map highlights how much

each given input value influences a specific neuron’s acti-

vation. By calculating the saliency map of the predicted

class for a certain input, it is possible to visualize the parts

of the input that have the most impact on the network’s

final prediction. For the computation of the saliency maps,

we used guided backpropagation [59], as it allows to obtain

sharper saliency maps.

3 Experiments

For the evaluation of our architecture, the ELoR network is

trained on the IEMOCAP dataset. Additionally, the three

previously presented variants (the LOM network, the FTR

network and the ELoR ? FTR network) are trained on the

same dataset to allow a comparison of their classification

accuracy. The two visualization strategies presented in the

previous section (network-driven and data-driven) are

applied to the trained ELoR network to gain insights on

which features are learned by the ELoR network to rep-

resent emotions.

A hyperparameter optimization was performed for each

network to guarantee the competitiveness of each of the

evaluated models. This ensures that our comparative

evaluation is fair, as for each model the optimal parameters

have been evaluated on the IEMOCAP dataset and were

chosen for the final experiments. All the experiments were

executed with the same hardware and are based on the

same software libraries.

3.1 Dataset

For the training and performance analysis, the interactive

emotional dyadic motion capture (IEMOCAP) dataset [6]

is used. It is a multimodal and multi-subject acted dataset

with improvisations and scripted dialogue scenarios to

express various emotional states. It consists of approxi-

mately 12-h audiovisual data performed by ten actors. The

actors have been separated for the dyadic conversations

into pairs, consisting always of one male and one female.

The data include speech and text transcriptions and are

annotated with both categorical and dimensional labels.

Each recorded dialogue has been manually segmented

using the dialogue turns to create continuous utterances, so

that only one of the actors is speaking most of the time. The

utterances vary in length from less than 1 s to 34 s. Each

utterance has been annotated by two to three annotators on

the dimensional scale on both auditory and visual infor-

mation. Moreover, the clips have been shown to the

annotators sequentially and thus with contextual informa-

tion. For dimensional annotations, each dimension (va-

lence, arousal, and dominance) is represented by a five-

point scale.

On average, each sample in IEMOCAP has been

annotated by 2.12 evaluators. Even though evaluators

rarely annotated all sample, there is still a relatively high

disagreement. For only 16% of all samples, the evaluators

agreed on the exact same value combination for valence

and arousal (with 25 combination possibilities in total).

One reason for that might be that every human has a per-

sonal bias that depends on his culture, language, and per-

sonality. This is in agreement with a study, conducted by

Metallinou and Naranyanan [43], that shows that humans

perform better in rating emotions in relative terms instead

of an absolute scale. Additionally, in some samples, we

have found a disagreement of the evaluators as they have
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set a different focus (e.g., one is rating the subjective

feeling, while the other focuses on the mood or interper-

sonal stances). To minimize subjective confusion and bias,

in this study only the evaluator ‘‘E-2’’ is considered for the

evaluation. Although this evaluator annotated fewer sam-

ples than the others, the annotations are more balanced

over the complete valence–arousal space and might allow

the networks to learn a higher variety of emotional

expressions.

3.2 Experimental setup

The input of the proposed model needs to have a fixed

length for the CNN. Therefore, every sample has been

sliced or padded with zeroes to a length of 6 s. For longer

recordings than 6 s, every 6 s of the utterance are sliced and

used as an individual sample with the same annotation. To

avoid training on the last phoneme of an utterance exclu-

sively, the last slice of a long utterance is used only if it is

longer than 3 s. This results in 8522 samples for evaluator

E-2.

Each sample is represented by a signed 16-bit integer

with the values in the range of ½� 32;768; 32;767�. The
amplitude of the input has been scaled down to 32-bit

floating point values within the range of ½�1:0; 1:0�. No
further preprocessing steps have been applied to the

recordings provided by the IEMOCAP dataset.

To allow an objective comparison of the three proposed

networks, experiments are performed to evaluate the clas-

sification performance of the networks on the IEMOCAP

dataset. All experiments have been conducted in a tenfold

cross-validation evaluation scheme, where each fold con-

sists of the samples of exactly one speaker. Thus, for each

evaluation, the samples of nine speakers were distributed

over the training and validation sets, while the remaining

samples of the last speaker were used as test set. This

allows a speaker-independent evaluation of the networks.

For each network, the same 10 test sets have been used for

evaluation.

Our visualization techniques have been applied to the

trained ELoR network for the following representative test

set: Ses03-F. This test set includes all samples of the

female subject in the third session from the IEMOCAP

dataset.

3.3 Hyperparamter optimization

The hyperparameters have been optimized for each archi-

tecture individually with the Python library hyperopt [5] to

find the best possible configuration. For the hyperparameter

optimization, the Tree of Parzen Estimator (TPE) [4] is

used. It is an optimization strategy to find the hyperpa-

rameters which achieve the highest performance accuracy

on a certain validation set within a defined search space.

The validation set, on which the architectures have been

optimized, consists of 20% randomly chosen samples of all

samples considered from the IEMOCAP dataset in the

respective cross-validation step.

For the ELoR network, the search space has been

defined by a uniform distribution with a mean based on the

hyperparameters suggested by Trigeorgis et al. [62]. In

total, 70 evaluation phases have been performed to opti-

mize the hyperparameters of the ELoR network. On an

8GB GPU GeForce GTX 1080, the hyperparameter opti-

mization for the ELoR network took 49 computing days.

Table 1 and Fig. 2 show the results of the hyperparameter

optimization and thus the final hyperparameters used for

the ELoR architecture in the following experiments.

For the LoM network, the search space has been chosen

based on the hyperparameters suggested by Barros

et al. [2]. In total, 150 evaluation phases have been exe-

cuted for the hyperparameter optimization on the LoM

network. Table 2 and Fig. 3a illustrate the final hyperpa-

rameters selected for the conducted experiments with the

LoM network.

For the FTR network also 150 evaluation phases have

been executed for the hyperparameter optimization. Table 3

and Fig. 3b illustrate the final hyperparameters selected for

the conducted experiments with the LoM network.

It was not feasible to find the optimal hyperparameters

for the ELoR ? FTR network, as the hyperopt search for

the ELoR network took already 49 computing days.

Therefore, combinations of the results for the ELoR

Table 1 Selected hyperparameters for the ELoR network

Parameter Value Parameter Value

Batch size 15 Learning rate 0.006

Epochs 9 Learning decay 0.9

Momentum 0.65 L2 regul. aw 1� 10�9

Table 2 Selected hyperparameters for the LoM network

Parameter Value Parameter Value

Batch size 5 Learning rate 0.08

Epochs 14 Learning decay 0.75

Momentum 0.7 L2 regul.aw 0.001

Table 3 Selected hyperparameters for the FTR network

Parameter Value Parameter Value

Batch size 30 Learning rate 0.00004

Epochs 16 Learning decay 0.99

Momentum 0.65 L2 regular. aw 3:4� 10�8
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network and the FTR network have been empirically

combined. Table 4 and Fig. 3c show the final hyperpa-

rameters selected for the ELoR ? FTR network.

4 Results

First, the performance of the proposed architectures is

presented and compared with different metrics to evaluate

if the ELoR network is competitive with state-of-the-art

approaches. Then, the results of different visualization

techniques of the ELoR network are shown and explained

in more detail to gain a better understanding of the learned

representations.

4.1 Performance comparison

For each network, the predictions and targets of all 10 test

sets have been combined to compute the average of the

weighted average recall (WAR) and the unweighted aver-

age recall (UAR) [18] in the most unbiased manner over all

test sets [21]. Table 5 presents the WAR and UAR for each

network and each emotional dimension.

The performance results show that the proposed ELoR

network is competitive with state-of-the-art approaches. For

arousal, the ELoR network seems to perform best, whereas

the FTR network seems to perform worst. This illustrates

that the CNN might be able to extract information from the

raw audio signal, which is not represented in the hand-

crafted features used for the FTR network.

Moreover, the results indicate that the ELoR ? FTR

network performs best on valence. This shows that for

valence the learned representations of the ELoR might be

complementary to the handcrafted features used for the

FTR network.

As the IEMOCAP dataset is highly imbalanced, a

classifier could achieve a higher WAR score than 0.200

(random guessing) by always predicting the most frequent

label. Based on the prior probabilities of the test sets, the

maximal WAR score for predicting only one label could be

reached by always predicting arousal ¼ 3. For valence, the

maximal WAR score could be reached by only predicting

valence ¼ 1.

Table 5 shows that the scores for the weighted average

recall (WAR) are on average higher than for the

unweighted average recall (UAR). This indicates that all

networks learned to consider the imbalances of the test sets

and used this information to increase the prediction accu-

racy of an emotional state over all samples. Table 5 addi-

tionally illustrates that the classification accuracy on

arousal is generally higher than on valence. This is in

agreement with several studies showing that in speech

usually the prediction accuracy for arousal is much higher

than for valence [50, 54, 63, 65].

As the proposed ELoR network is competitive to net-

works with state-of-the-art handcrafted features, a deeper

analysis of the learned representations of this architecture

can give valuable information on the most important

acoustic and prosodic features in vocal emotional

expressions.

4.2 Learned representations

For a deeper understanding of the implicitly learned rep-

resentations, two different visualization methods have been

applied to the trained ELoR network: data-driven visual-

izations (saliency maps) and network-driven visualizations

(generalized input signals).

4.2.1 Data-driven visualizations

The data-driven visualization method allows illustrating a

saliency map based on the network’s prediction on a

specific speech input. The obtained saliency maps indicate

which segments of an utterance have the most influence on

the final prediction of the network. Figure 4 shows an

exemplary saliency map that has been computed for the

prediction of arousal based on a specific recording.

The Pearson correlation coefficient is used to identify

how much the amplitude of the input influences the final

prediction of the ELoR network. Based on the IEMOCAP

Table 4 Selected hyperparameters for the ELoR ? FTR network

Parameter Value Parameter Value

Batch size 15 Learning rate 0.005

Epochs 6 Learning decay 0.9

Momentum 0.65 L2 regul. aw 1� 10�9

Table 5 Results on the average performance of each network

Model Arousal Valence

WAR UAR WAR UAR

ELoR net 0.524 0.394 0.429 0.300

LoM net 0.510 0.351 0.424 0.281

FTR net 0.466 0.307 0.412 0.263

ELoR ? FTR net 0.472 0.362 0.411 0.302

Random guessing 0.200 0.200 0.200 0.200

Most frequent label 0.408 0.200 0.392 0.200

The weighted (WAR) and unweighted (UAR) average recall are

shown for each network. Additionally, the average results for random

guessing classifiers are compared

Best values are given in bold
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dataset, the average correlation between the input signal

and the corresponding saliency map for arousal is 0.50 and

for valence 0.53. This shows that there exists a correlation

between the amplitude of the speech signal and the

obtained saliency map on both dimensions. This means that

the amplitude of the signal in the time domain is important

to predict the perceived emotional state of the speaker.

Thus, it can be concluded that the louder a phoneme is

perceived relative to the complete signal, the more influ-

ence it has on the final prediction of the emotional state.

Since spectrograms do not explicitly represent the ampli-

tude of the signal in the time domain, this also suggests that

the ELoR network can extract relevant information, which

is not represented in the MFCC representation used for the

LoM network.

Another finding is that there exists a strong correlation

between the saliency maps obtained for the prediction on

valence and the saliency maps computed for the prediction

on arousal for each sample of the IEMOCAP dataset (on

average the Pearson correlation coefficient is 0.96). The

saliency maps represent the gradients of the complete

ELoR network. This includes the shared CNN network as

well as the separated MLPs for each emotional dimension.

As both saliency maps for valence and arousal have been

obtained on the same input sample, the strong correlation

suggests that the final prediction on both dimensions relies

on the same parts of the input signal. Moreover, the strong

correlation indicates that both MLPs seem to rely mainly

on the same parts of the learned representations of the

CNN. Therefore, it can be concluded that the perception of

a specific emotional state depends on both dimensions on

similar representations of the utterance.

4.2.2 Network-driven visualizations

The network-driven visualizations allow for a better

understanding of the implicitly learned representations

independent of specific input samples. Based on the fixed

and already trained parameters of the ELoR network, input

signals are learned to maximize a specific output (e.g.,

arousal ¼ 0). For each label on both valence and arousal, a

generalized input signal is obtained. As there exist five

labels for each of the two dimensions arousal and valence,

10 generalized input signals have been learned in total.

The generalized signals for arousal and their character-

istics are presented in Fig. 5a and Table 6 (left).

The visualizations of the learned input signals show that

the ELoR network predicts more likely a higher degree of

arousal, if

– the signal contains high frequencies;

– the signal contains many interruptions;

– the signal contains higher peaks of the amplitude; and

– the signal contains periodic frequencies for a longer

period of time.

The results indicate that the perception of a more excited

emotional state is correlated with higher frequencies, a

faster-speaking rate, and longer utterances. The overall

loudness of an utterance seems to have no influence on the

prediction of arousal. This might be due to the fact that the

IEMOCAP contains highly different speakers. For exam-

ple, the female subject in the first session is very loud and

extroverted, while the female subject in the third session

seems to be rather shy and relatively quiet. However, the

results suggest that higher peaks of the amplitude correlate

with the perceived excitement. Thus, it seems that the

maximal difference of amplitude is more important than

the overall loudness for the prediction on arousal.

For valence, the generalized signals and their charac-

teristics are presented in Fig. 5b and Table 6 (right).

The visualizations of the generalized input signals

indicate that the ELoR network predicts more likely

– an extreme value (i.e., valence ¼ 0 or valence ¼ 4) if

the signal contains high frequencies;

– an extreme value if the signal contains periodic

frequencies for a longer period of time;

– a lower value (i.e., valence ¼ 0 or valence ¼ 1) if the

signal exhibits clear and constant pauses in frequency

and duration;

– a lower value if the signal is louder; and

– a higher value (i.e., valence ¼ 3 or valence ¼ 4) if the

signal exhibits pauses that decrease in frequency and

increase in duration.

For valence, the results indicate that the emotional state is

perceived more negatively when the utterance exhibits

Fig. 4 Visualization of an exemplary saliency map that has been

obtained for the prediction on arousal on a recording with a sampling

rate of 16 kHz. The first row shows the input signal in the time

domain. The second row illustrates the positive values of the obtained

saliency map. The last row gives a visualization of the input signal,

while the colors represent the values of the saliency maps at each time

step. Red represents a high positive saliency value, while blue

represents a high negative saliency value (color figure online)
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(b)

Fig. 5 Characteristics of the learned and generalized input signals that

maximize a specific output in the ELoR network for each emotional

dimension: arousal and valence. Each signal has been learned to

maximize the network’s prediction for that specific label. The signals

are illustrated in both time domain (top) and frequency domain

(below). a Generalized input signals for arousal in ascending order by

the corresponding labels. b Generalized input signals for valence in

ascending order by the corresponding labels (color figure online)

Table 6 Simplified and summarized results for all generalized input signals on arousal (left) and valence (right)

Arousal Valence

0 1 2 3 4 0 1 2 3 4

Loudness (dBFS) � 57:3 � 55:6 � 56:7 � 58:3 � 56:5 � 55:7 � 56:6 � 56:8 � 57:0 � 57:6

Dom. f. (kHz)a 0–0.23 0–0.23 0–8.0 2.8–8.0 2.8–8.0 2.8–8.0 0–0.2 0–0.2 0–8.0 2.8–8.0

Min. amplitude � 0:006 � 0:009 � 0:010 � 0:014 � 0:013 � 0:020 � 0:010 � 0:013 � 0:011 � 0:015

Max. amplitude 0.008 0.013 0.013 0.015 0.012 0.015 0.009 0.015 0.013 0.014

Pause d. (ms)b � 500 � 200 � 200 � 120 � 120 � 150 � 100 0 � 100 � 250

‘‘Voiced’’ s. (s)c 3 3 3.5 5 6 6 3.5 1 2 6

a Dominant frequency
b Pause duration
c Length of the segment that contains voice
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clear and constant pauses that do not vary much in their

length and frequency. This might be comparable with a sad

and dragging voice or, if for example anger is expressed,

simply very clear pauses. Also a more quiet speech seems

to indicate a more negative emotional state. When pauses

within an utterance are lasting longer, but appear more

seldom over time, the network seems to have learned to

predict a more positive emotional state. Moreover, the

learned input signals suggest that higher frequencies in

speech and longer utterances also indicate that a more

extreme emotional state on valence is perceived, such as

label 0 (very negative) or label 4 (very positive).

5 Discussion

In this paper, we propose a general method for learning

auditory features of emotional expressions in speech. The

results show that the method does not only achieve com-

petitive classification results with state-of-the-art approa-

ches but also enables a deeper understanding of the most

relevant auditory representations in speech for emotion-

related tasks.

We realize that some of the findings need to be con-

sidered with some caution. The presented results are based

on the learned representations of the ELoR network, which

has been trained on the annotations of one specific evalu-

ator (E-2) only. Therefore, the specific results discussed in

this work should not be considered universal. Nevertheless,

our results confirm that the network is able to acquire

phonetic characteristics that are known in linguistics to be

generally relevant for arousal and valence [53].

Additionally, we emphasize that the learned represen-

tations are based on the IEMOCAP dataset only. This is a

potentially limited training source for the network to

completely learn the complex two-dimensional space of

emotional expressions. Also, the annotations of IEMOCAP

have been rated not only based on audio signals, but also

on vision. Moreover, the evaluators rated the samples in a

sequential order. This means that they were fully aware of

the context. In our study, the proposed networks had to

learn these annotations based on auditory information only.

Also, the samples have been presented to the network in a

random order. Therefore, it was not possible for the net-

works to extract any inter-context information between the

samples. Thus, the network had to reproduce the same

emotional states on less information than given to the

evaluators of the dataset. By using a dataset that consists of

annotations based on acoustic information only, the net-

work might even learn more discriminative features.

Nonetheless, the results of the conducted experiments show

that the network was able to extract important and dis-

criminative auditory representations to predict an

emotional state based on sound only. Moreover, the visu-

alizations and analysis of these learned representations give

insights into the most relevant auditory features for emo-

tional expressions in speech.

In general, we argue that an objective classification of

emotional states is highly complex and difficult. The

‘‘ground truth’’ of an emotional state remains latent and

unresolved. In emotion recognition tasks, the labels for an

emotional state typically reflect the subjective perception

of one or more annotators. However, this perception can

differ based on the annotator, the context the annotator is

aware of, the speaker, and the context the speaker is aware

of. This emphasizes that emotions and their causes are

complex and not fully understood. Therefore, it is impor-

tant to study each of the separated domains in more detail,

such as the definition of emotion, the generation of more

suitable datasets, and an understanding of the most

important features for each modality. This does not mean

to purely focus on achieving a higher recognition perfor-

mance by combining as many modalities (e.g., vision,

acoustics, semantics) as possible, but to focus on under-

standing each modality in more depth first. Thus, the

contribution of this study has not only been to propose an

emotion recognition system that achieves the highest

classification accuracy but also to find a general method

that allows a deeper analysis and understanding of the most

important features in the context of vocal emotional

expressions.

5.1 Conclusions

Up to date, there is no clear consensus among researchers

which auditory features are learned by deep neural net-

works on speech emotion recognition tasks. Thus, we

propose a deep neural network topology to automatically

learn features for emotional categorization of speech

directly from the unprocessed signal in the time domain.

Furthermore, we introduce two methods for analyzing the

representations that the network learned.

As the features have been implicitly learned by the

network, the learned representations are mostly indepen-

dent of previous assumptions or expert knowledge in

extracting features in the emotion recognition domain. The

analysis has shown that the implicitly learned representa-

tions perform better than representations of handcrafted

features. Moreover, the results indicate that the network

has even learned new and complementary auditory features

for the prediction on valence. Thus, visualization methods

have been adopted to analyze the learned representations of

the trained networks. The network has learned that higher

frequencies, a faster-speaking rate, and longer utterances

are used for a more excited emotional state. For the per-

ception on valence, the network has learned that clear and
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constant pauses indicate a more negative emotional state,

while a decreasing rate of pauses, which last longer over

time, tends to indicate a more positive emotional state.

Moreover, a more positive or negative emotional state is

predicted for utterances with higher frequencies and longer

utterances. This suggests that a more extreme value on

valence is correlated with high arousal. The analysis of the

learned representations has also shown that a higher

amplitude in a speech signal has more influence on the

perceived emotional state. Also, it indicates that the pre-

diction on arousal and on valence is based on the same

speech segments.

Thus, we propose a general method that enables a deep

analysis and interpretation of automatically learned repre-

sentations for speech. The results show that the network

was able to learn relevant representations of speech that

could be interpreted in more detail. Therefore, this study

contributes to a deeper understanding of the most relevant

acoustic and prosodic features learned for the perception of

emotional expressions in speech.

5.2 Future work

For a more general analysis of the acoustic and prosodic

features that are most relevant in emotional expressions,

the proposed methods can be applied to a greater amount of

data. Data should be collected that includes dimensional

annotations of many evaluators per recording to enable a

better generalization on the perception of emotional states.

For more specific results on the acoustic features, a dataset

with dimensional annotations based on speech data only

could be collected and studied. Also, datasets that consist

of different languages could be used to compare the most

relevant features in speech for different languages and

cultures.

To enable a more fine-grained interpretation on the

emotional expressions in speech, the proposed approaches

could also be applied to a dataset that contains continuous

values for valence and arousal. Then, the task could be

considered as a regression problem. By adopting a loss

function that is dependent on the standard deviation of the

different annotations, the great variety of different per-

ceptions of emotional states could be additionally learned

by the network. Furthermore, it could be highly interesting

for future research to combine the linguistic information of

speech to investigate if this changes the learned represen-

tations on the acoustic information.

By using the proposed method with these suggestions, a

universal understanding of acoustic and prosodic features

for emotional expressions across different cultures could be

gained.
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