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Abstract—We investigate hierarchical attention networks for
the task of question answering. For this purpose, we propose two
different approaches: in the first, a document vector represen-
tation is built hierarchically from word-to-sentence level which
is then used to infer the right answer. In the second, pointer
sum attention is utilized to directly infer an answer from the
attention values of the word and sentence representations. We
evaluate our approach on the Children’s Book Test, a cloze-style
question answering dataset, and analyze the generated attention
distributions. Our results show that, although a hierarchical ap-
proach does not offer much improvement over a shallow baseline,
it does indeed offer a large performance boost when combining
word and sentence attention with pointer sum attention.

Index Terms—hierarchical attention networks, recurrent neu-
ral networks, pointer sum attention, question answering

I. INTRODUCTION

Attention-based recurrent architectures have recently been
successfully applied to tasks such as language modelling [1],
speech recognition [2], or machine translation [3]. Recently,
hierarchical attention has been proposed in the form of the
Hierarchical Attention Network (HAN) and successfully been
used for document classification [4]. The main idea of the
HAN is to hierarchically apply attention mechanisms at the
word- and sentence-level. This way, the network representa-
tions are able to mirror the hierarchical structure of documents.
A different task that might highly benefit from structured
representations is question answering. Assuming direct ques-
tions, e.g. about entities, relevant information is typically
very sparsely distributed over documents used for question
answering. That is, few sentences in the provided document
relate to the asked question, and of these only a few contained
words need to be queried to infer the correct answer.

Therefore, we investigate how the HAN can be used for this
task and we focus on cloze-style question answering (QA). In
such recent datasets for QA, queries are generated by removing
a single word (e.g. a named entity) from a sentence which then
has to be inferred from the remaining text. This allows one
to assume that the answer to the question is a single word
contained in the text document, and that the dataset provides
candidate words for the answer.
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Although attention-based models are quite popular for QA
tasks [5], [6], few hierarchical approaches with attention
mechanisms have been proposed to date. Previous successful
approaches for QA mostly use shallow recurrent encoders [7]
that only operate on word-level or work with task-specific
memory representations, such as the end-to-end memory net-
work [8]. A hierarchical variant of memory networks has also
been introduced [9] although its hierarchical memory is fixed
and not learned. A hierarchical model for long text documents
has been proposed by Choi et al. [10]. Different to our
bottom-up approach of building hierarchical representations
from word- to document-level, they present a more top-down
approach where the model first selects relevant sentences
before generating answers with reinforcement learning. Hi-
erarchical models have also successfully been used for visual
question answering [11] although the structure of images is
very different to that of text documents.

Other work has investigated novel attention mechanisms that
facilitate training specifically for QA tasks. For example, the
Attention Sum Reader Network (ASRN; [5]) assumes that the
answer is contained in the document, allowing it to directly
point to the answer rather than inferring it from a blended
representation of words as is usual in similar models.

In this paper, we investigate both approaches and propose a
novel hierarchical model. We adapt the original HAN to QA
tasks and extend it twofold to infer an answer from hierarchical
representations: first, based on a hierarchical document vector
representation (HAN-doc-vec) and second, based on pointer
sum attention (HAN-ptr). We evaluate our models on the
Children’s Book Test (CBT; [12]) and compare them to a
non-hierarchical variant to ultimately address the following
research questions:

1) Does hierarchical attention facilitate the task of cloze-
style question answering?

2) Does pointer sum attention work better than a blended
document vector representation for integrating hierarchi-
cal representations?

II. HIERARCHICAL ATTENTION NETWORK FOR QUESTION
ANSWERING

In this section, we describe the suggested models. The
hierarchical structure is realized by primarily adapting the
Hierarchical Attention Network (HAN; [4]) to the QA task.



The main idea is as follows: at word level, our system
encodes a sentence representation from word representations.
At the sentence level, it learns to represent the document based
on these sentence representations. This final representation
is then used to find the most likely word in the document
which answers the query. To realize this final step, we propose
two variants. The first builds up a document vector (HAN-
doc-vec) from hierarchical attention that is used to infer the
correct answer from a blended representation. The second
uses pointer sum attention at the final layer (HAN-ptr) in
order to compute answer probabilities directly from the word
and sentence attention values. Additionally, we evaluate our
architectures by realizing a non-hierarchical attention model
(RAN) as an appropriate baseline.

A. The Word Level

Our architecture assumes three different inputs, namely the
text document D, the question q, and a list of candidate words
c, which contains the correct answer. We start at the word
level by embedding the document Dinp and the question qinp

into word vectors with the help of the pre-trained embedding
matrices EA and Eq (we use GloVe embeddings [13]). This
gives us the embedded representations Demb = ED ·Dinp and
qemb = Eq · qinp.

1) Word Encoding: Similar to the HAN, we use Gated
Recurrent Units (GRUs; [14]) as recurrent sequence encoders
throughout our architecture. Our main motivation of choosing
the GRU over the Long Short-Term Memory (LSTM; [15])
is that it offers similar performance for less parameters. The
GRU state ht is generally computed with the help of an update
gate zt and a reset gate rt as follows:

zt = σ(Wxz · xt +Whz · ht−1), (1)
rt = σ(Wxr · xt +Whr · ht−1), (2)

h̃t = tanh(Wxh · xt +Wrh · (rt ⊗ ht−1)), (3)

ht = (1− zt)⊗ ht−1 + zt ⊗ h̃, (4)

where h̃t are the candidate activations, and the matrices W
are trainable connections from the input or previous layer state
to the current layer state. The σ denotes the sigmoid activation
function, and ⊗ signifies element-wise multiplication.

We employ a bidirectional GRU (biGRU) [2], where we
use one GRU layer to read the sentences forward, from left
to right, and another to read them backward in reversed order.
This gives us the forward hidden state ~ht and the backward
hidden state ~ht. Both layer encodings are then combined by
concatenation, i.e. ht = [~ht, ~ht], to receive the output of the
bidirectional layer. Therefore, by looking at both directions
simultaneously, we allow the network to capture more context
around each word.

At the word level, we now encode our word embeddings
for the document and the question with two separate biGRU
layers, calling the resulting encodings Dword and q:

Dword = biGRU(Demb
t ) = [~ht(D

emb
t ), ~ht(D

emb
t )] (5)

q = biGRU(qemb
t ) = [~ht(q

emb
t ), ~ht(q

emb
t )] (6)

The document is processed sentence by sentence at this
word level, i.e. the currently processed sentence serves as
the available context. Consequently, Dword

t encodes contextual
information for each word within its sentence.

2) Word Attention: In the next step, we use an attention
layer so that each word can have a different contribution to
the sentence representation:

βword
i,j = qT ·Dword

i,j (7)

αword
i,j = softmax(βword

i,j ) (8)

Since the dot product acts as a similarity measure between
each word and the question, βword

i,j acts as an indicator on the
relevance of the question to the j-th word of the i-th sentence
in the document encoding Dword

i,j . Applying the softmax gives
us a probability distribution which we can use as the word-
level attention values αword

i,j .
In the final step, we use these word attention values as

weights for the associated word encodings to blend them into
an aggregated sentence representation:

Dblend
i =

n−1∑
k=0

αword
i,k ·Dword

i,k (9)

This leads to words with larger attention values being repre-
sented more prominently in the sentence representations.

B. The Sentence Level
After the end of the word level, we were able to estimate the

importance of each word w.r.t. the question. The purpose of
the sentence level is to allow the same for the sentences. This
also allows us to discard previously high word attention values
in sentences with low sentence attention which are meant to
contain little information to answer the question.

Therefore, the previous steps are now mostly repeated on
sentence level: we feed the previously attained sentence rep-
resentations into a biGRU encoder and gain a document-level
representation of weighted sentences by computing attention
values on the sentence representations.

1) Sentence Encoding: At this point, we can enrich the vec-
tor of each sentence with context information from the whole
document by feeding the sentence representations Dblend to a
sentence-level biGRU:

Dsent = biGRU(Dblend
t ) = [~ht(D

blend
t ), ~ht(D

blend
t )] (10)

Since this layer processes a sequence of sentence representa-
tions, this may lead to each sentence vector Dsent

i containing
information on both Dblend

i as well as the neighbouring
sentences Dblend

i−1 and Dblend
i+1 .

2) Sentence Attention: The sentence attention is computed
analogous to the word attention values:

βsent
i = qT ·Dsent

i (11)
αsent
i = softmax(βsent

i ) (12)

Note that we use the same question vector q from the word
level. Using the sentence encodings, βsent

i now indicates the
similarity between this question vector and the contextual
sentence vector Dsent

i .



C. Computing the Final Output

After calculating the hierarchical attention-based representa-
tions in the previous sections, we now introduce two different
methods to infer an output answer. The first method uses a
document vector representation (HAN-doc-vec), the second
pointer sum attention (HAN-ptr) to find the correct answer
word in the document.

1) Document Vector: Calculating a document vector rep-
resentation after the sentence attention layer is the most
natural approach as it mirrors the production of the sentence
vectors Dblend on word-level. We therefore blend all weighted
sentence vectors together to get Ddoc:

Ddoc =

m−1∑
k=0

αsent
k ·Dsent

k (13)

This vector sums up the entire document based on the sentence
attention values. By doing this, we have propagated the
attention information of the most-likely words from word to
document level. In order to compare Ddoc with the candidate
answers c, we apply a linear transformation to reduce the
vector dimension to that of the embedded candidate vector
cemb and get the final document vector Dfinal:

Dfinal = Wf ·Ddoc + bf , (14)

where Wf is a weight matrix and bf are the biases.
To compute the final output using Dfinal and c, we

assume that if a candidate is the answer to the question, it
should be represented more prominently in Ddoc than the
other candidates. While it is possible to simply measure the
similarity between Dfinal and cemb, this would lead to a
negative influence of candidate vectors that do not have pre-
trained embeddings. Therefore, we still initialize the candidate
embeddings with pre-trained word embeddings Ec but allow
the embedding layer to update during training (different to
qemb and Demb who have static embeddings). Training the
candidate embeddings end-to-end now allows the lower recur-
rent layers to enrich them with semantic context.

With the candidate embeddings, we can finally calculate the
final similarity and apply a softmax to see the likelihood for
each candidate ci that it is the correct answer:

γ = cT ·Dfinal, (15)

P doc(ci|Dinp, qinp, cinp) = softmax(γ) (16)

The complete HAN-doc-vec model architecture is illustrated
in Fig. 1.

2) Pointer Sum Attention: Different to the HAN-doc-vec,
we also investigate how we can use the previously computed
attention values in order to directly infer the answer without
computing a document vector after the sentence level. The
main idea is inspired by the work of Kadlec et al. on their
Attention Sum Reader [5] and our resulting model HAN-ptr
integrates it in a hierarchical manner.
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Fig. 1. HAN-doc-vec model.
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Fig. 2. HAN-ptr model.



As a first step, we combine the word and sentence attention
values to get a probability distribution over all words of the
document:

αdoc
i,j = αsent

i · αword
i,j (17)

As a result, the overall attention αdoc
i,j for each word is linked

with the attention it received in its sentence i as well as the
attention the sentence i itself received over the document. This
allows us to apply pointer sum attention as defined by Kadlec
et al. [5] to our hierarchical model.

For the candidates cinp, we now sum the attention values in
αdoc
i,j for each occurrence of cinpi in the document Dinp. The

candidate with the most cumulative attention is chosen as the
right answer. In other words, let Y (i) be the set of indices
defined by:

Y (i) = {(k, l)|Dinp
k,l = cinpi , 0 ≤ k < m, 0 ≤ l < n}, (18)

Then, Y (i) includes all positions in the document where the
candidate cinpi occurs, and the overall attention of cinp is then:

P ptr(ci|Dinp, qinp, cinp) =
∑

(k,l)∈Y (i)

αdoc
k,l (19)

The idea behind using pointer sum attention in such a fashion
is to try to exploit the hierarchical attention structure to
produce more accurate attention values than only calculating
the attention on word level (as the ASRN does). While the
doc-vec approach continuously transforms its representations
hierarchically, this method directly uses the captured informa-
tion from each hierarchical layer.

One limitation of this approach is that the pointer sum
attention only looks at candidate words in the text document,
i.e. any context information about other words is only coded
indirectly through their attention values. The complete model
using the pointer sum attention is illustrated in Fig. 2.

D. Baseline model

In order to investigate the impact of the hierarchical struc-
ture in our models, we construct a baseline by removing the
sentence level from the HAN-doc-vec (illustrated in Fig. 3).
The resulting model is very similar to that of Chen et al. [7]
except that we still build a document vector representation
from the word level, apply the linear transformation from
Equation 14, and avoid using their bilinear attention form as
we found this method to not increase the overall performance
significantly enough to warrant a larger parameter size.

For the sake of clarity, we call this baseline the Recurrent
Attention Network (RAN). One difference to the other two
models is that the network takes the entire document sequence
as input since the baseline only operates on word level. So
different than the other two models, the recurrent layers of
the RAN can keep context information between sentences.

E. Summary

To summarize, we investigate the following models with
increasing complexity:

1) RAN: Recurrent Attention Network (non-hierarchical
baseline)

biGRU biGRU

word
embedding

question
embedding

Attention

Ddoc

softmax

Dense candidate
embedding

Fig. 3. The baseline model RAN.

2) HAN-doc-vec: Hierarchical Attention Network with
document vector representation

3) HAN-ptr: Hierarchical Attention Network with pointer
sum attention

Both HAN variants build up hierarchical representations on
word and sentence level. The ptr model infers the answer di-
rectly from the attention values while the doc-vec model builds
an additional representation on document level to summarize
the sentences and infer the answer with trainable candidate
embeddings.

III. EXPERIMENTS

A. Dataset

We use the Children’s Book Test (CBT; [12]) to evaluate
our models. The dataset is constructed from 108 children’s
books which typically have a very clear narrative structure. It
is also one of the currently more popular cloze-style datasets
for automated question answering, wherein the questions and
answers are generated by removing a single word from a
sentence which then has to be inferred from the remaining text.
In the CBT dataset, each document consists of 21 consecutive
sentences. One word removed from the 21st sentence serves
as the answer while the remaining sentence forms the query.
The reader then has to read the previous 20 sentences (the
context) and pick one from ten candidate answers which best
fit the placeholder in the query.

For this study, we investigate two different types of words
that may be treated as placeholders: Named Entities (NE)
and Common Nouns (CN). These two categories have been
constructed for the CBT dataset using the Stanford Core
NLP toolkit [16] and are therefore effectively treated as two
different datasets. We choose these categories as it has been
shown that LSTM language models have difficulty achieving
human performance with these two-word types in the CBT
dataset [12]. It is important to note that we only use raw text as
input, i.e. there are no entity annotations that are shown to the



models. CBT-CN consists of 120,769 and CBT-NE of 108,719
training documents. Both datasets have 2,000 validation and
2,500 test documents. The total number of unique words is
roughly 53,000 for both datasets.

B. Training Details

We use pre-trained GloVe word embeddings [13] and
investigate the three available embedding dimensions of
|E| ∈ {100, 200, 300}. For unknown words, we draw random
numbers from a uniform distribution in the same value range
as the embeddings. For the number of hidden units we
choose |~h| = | ~h| ∈ {256, 384, 512} for both backward and
forward layers, i.e. each bidirectional hidden layer has twice
as many units in total. We observed smaller sizes leading to
significantly worse accuracies, whereas larger layers led to
challenging computational requirements. The models are run
on a single GPU (NVIDIA GTX 1080 Ti) using a batch size
of 64, which leads to an average training time of 20 minutes
(HAN-ptr) and 25 minutes (HAN-doc-vec) per epoch on the
larger dataset. The RAN model takes 2 hours per epoch since it
receives the entire document as a sequence. All networks train
for a maximum of 7 epochs and we record the epoch with
the best validation accuracy. The recorded median number
of epochs for convergence is 4 for the RAN baseline and
HAN-doc-vec, and 3 for the HAN-ptr. All our models are
trained using the Adam optimizer [17] and the categorical
cross entropy loss. A learning rate of 0.001 is picked for
both datasets as the result of preliminary experiments. Each
hyperparameter configuration is trained 10 times with different
seeds to account for randomization.

C. Evaluation

1) Hyperparameters: Fig. 4 summarizes our hyperparame-
ter evaluation on both datasets. Overall, smaller GloVe word
embedding dimensions seem to work better than larger ones.
However, the variance is smaller for the HAN-ptr model, indi-
cating that the other two models could face difficulties training
candidate embeddings with high dimensionality (the HAN-ptr
uses a simple lookup instead of candidate embeddings).

The number of hidden units per layer seems to positively
correlate with the validation accuracy, although the overall
variance caused by changing hidden units is much smaller
than that observed from different embeddings. This shows an
overall robustness of all models w.r.t. their parameter size.

As in previous studies, our networks also have an easier time
querying for named entities than common nouns (see Tab. I).
The HAN-doc-vec model is even slightly behind our baseline
for named entities, while it gives more consistent results for
common nouns where it slightly improves on the baseline.

2) Test Results: After hyperparameter optimization, we
select the best models based on the validation accuracy and
evaluate them on the test set. Tab. I shows our best results for
the Common Noun (CN) and Named Entity (NE) categories of
the CBT dataset. As can be seen, the HAN-doc-vec falls short
to significantly improve on our baseline RAN (especially in
the NE category). This shows that the hierarchical processing

0.60

0.65

0.70

va
lid

at
io

n 
ac

cu
ra

cy

0.55

ba
sel

ine

do
c-v

ec
ptr

ba
sel

ine

do
c-v

ec
ptr

ba
sel

ine

do
c-v

ec
ptr

256 384 512
hidden units:

embeddings: 100 200 300

0.50

(a) Results on CBT-CN (Common Noun)

256 384 512
hidden units:

ba
sel

ine

do
c-v

ec
ptr

ba
sel

ine

do
c-v

ec
ptr

ba
sel

ine

do
c-v

ec
ptr

va
lid

at
io

n 
ac

cu
ra

cy

0.60

0.65

0.70

0.55

0.50

0.75

embeddings: 100 200 300

(b) Results on CBT-NE (Named Entity)

Fig. 4. Swarmplot with validation accuracies. Evaluating the three models,
RAN (baseline), HAN-doc-vec, and HAN-ptr with different embedding and
hidden dimensions.

itself does not guarantee better performance. On the other
hand, the HAN-ptr gives significantly better results than both
the baseline and the doc-vec version. By comparing this result
to the single model Attention Sum Reader Network (ASRN),
we can also conclude that the attention sum pointer is not
the only cause for the performance gain of the HAN-ptr. For
common nouns, in particular, we get a better test accuracy with
the HAN-ptr. Since the ASRN also uses the same attention
mechanism, we are left to assume that our hierarchical layout
is the reason that we can partially improve on the original



Common Noun Named Entity

Model valid test valid test

Humans (query) 1 - 64.4 - 52.0
Humans (query + context) 1 - 81.6 - 81.6

Maximum Frequency (context) 1 27.3 28.1 29.9 33.5
LSTMs (query) 1 61.3 54.1 50.0 40.8
LSTMs (query + context) 1 62.6 56.0 51.2 41.8
Memory Networks 1 64.2 63.0 70.4 66.6
Attention Sum Reader Network 2 68.8 63.4 73.8 68.6

RAN (non-hierarchical baseline) 60.8 57.4 64.4 58.7
HAN-doc-vec 60.4 56.4 62.9 57.7
HAN-ptr 69.1 67.7 75.5 69.9

TABLE I
OVERVIEW AND COMPARISON OF OUR RESULTS ON THE CBT DATASET

FOR THE COMMON NOUN (CN) AND NAMED ENTITY (NE) CATEGORIES.
RESULTS MARKED WITH 1 ARE FROM [12], WITH 2 ARE FROM [5].

ASRN. The differences between the two word type categories
additionally suggest that a hierarchical pointer sum approach
is more beneficial when learning common nouns.

However, even though our result improves on related ap-
proaches, it does not achieve state-of-the-art results on the
CBT dataset. Using a gated attention mechanism, Yang et al.
[18] have achieved higher test accuracies of 72.0% (CBT-
CN) and 74.9% (CBT-NE) although their model works on
character- and word-level and is therefore assumed to be
significantly more computationally expensive.

D. Pointer Sum Attention on Pre-Trained Models

The pointer sum attention mechanism leads to an attention
distribution over the entire document, leading to more sparsely
distributed attention than in the HAN-doc-vec. This means that
the pointer sum attention should identify less crucial words.
To gain a deeper understanding of the differences between
HAN-doc-vec and HAN-ptr, we apply pointer sum attention at
test time, exchanging the output layers of the best pre-trained
HAN-doc-vec and RAN model with the ptr layer. This results
in the baseline accuracy dropping from 55.28% to 41.08% and
the HAN-ptr dropping slightly from 56.24 to 53.64%.

Since both networks have trained with a different objective,
it is somewhat predictable that this procedure reduces the
overall performance. It is however interesting to note, that the
HAN-doc-vec achieves almost the same performance when
removing everything after the final sentence attention layer
and inferring the answer directly with the two attention layers.
Our interpretation of this is that during training, the HAN-doc-
vec only transforms the information already contained in the
attention values into the document vector. It does not seem to
gain much additional information by combining the contextual
sentence vectors and attention values to form Adoc. It seems
that the main challenge for the model is to come to the point
of calculating the attention values, which seems to be most
critical for the final performance.

We, therefore, hypothesize that HAN-doc-vec puts enough
information into the attention distribution (without losing a
significant amount of accuracy) to be able to evaluate it and

Common Noun Named Entity

baseline doc-vec ptr baseline doc-vec ptr

1. business business am the the .
2. obey pay obey and , ,
3. am obey business in and the
4. so in so a to ”
5. in meddle soon of he !

TABLE II
WORDS WITH THE HIGHEST CUMULATIVE WORD ATTENTION SCORE IN

THE TEST SET (IN DESCENDING ORDER).

Common Noun Named Entity

baseline doc-vec ptr baseline doc-vec ptr

1. crouched slanderous blarney separate july somalo
2. wails murderous jewelled humph ein ralston
3. agreement seaweed shirtsleeves sixteen ralston bandmaster
4. orders disappear somalo gulped saxby shelmardine
5. scraps resolute rescue modern dancer emperor

TABLE III
WORDS WITH THE HIGHEST RELATIVE WORD ATTENTION SCORE IN THE

TEST SET (IN DESCENDING ORDER).

to transform the attention into an answer while neglecting the
associated contextual sentence vectors. HAN-ptr is trained to
do exactly this and should, therefore, have an advantage, which
may result in the better performance that we have observed.

E. Attention Distributions

We investigate our models for differences in their attention
distribution. For this purpose, we sort words by their total cu-
mulative attention score over the test set. The “most attended”
words are shown in Tab. II. Within each category, the models
mostly share similar words. However, the differences between
the two word categories are quite large. In particular, when
querying named entities, a lot of attention is put on stop words.
The HAN-ptr seems to even generate large attention towards
punctuation.

In order to filter out very frequent words, we normalize
the total attention score by word frequency which gives us a
different list (see Tab. III). It is visible that these words, with
the highest attention score per occurrence, are very context-
specific nouns and adjectives, with many of them being
uncommon. By comparing this to the absolute attention scores,
we can infer that attention is often distributed to meaningless
words. However, in relative terms, the attention scores are
highest when rare words are encountered that share a semantic
context with the answer. Since we can further see that all
three models produce quite different word lists when sorted
by relative attention scores, this also indicates that all three
approaches reach quite different internal models for semantic
context.

Since the attention distributions naturally depend on the
length of the documents, we have further examined how
the testing accuracy depends on the length of the context



more 0.34

00 0.007 no sooner had ferko entered the 0.12 palace than all eyes

01 0.004 his brothers noticed this and envy and jealousy were added
much so that they determined once more to 0.47 destroy 0.16 him .

02 0.009 they went to 0.12 the king and told him that ferko was a 0.11

03 0.006 then the king had ferko brought before him and said ` you

04 0.003 and turning to 0.50 the 0.12 two wicked brothers he said ,

05 0.059 they did not think long but replied
him to do ; no matter how difficult , he must succeed in it or die . '

let him build your majesty

06 0.001 the 0.23 king 0.13 was pleased with this proposal 0.23 , and
set to work on the following day . 0.17

07 0.003 the 0.15 two brothers were delighted , for they thought they
ferko 0.11 for 0.17 ever . 0.33

08 0.009 the 0.15 poor youth 0.27 himself was heart-broken , and cursed
crossed the boundary of the king 's 0.26 domain .

09 0.045 as he was wandering disconsolately about the meadows round

10 0.015 can i be of any help to 0.87 you ?
11 0.022 i am the 0.26 bee whose wing you healed , and would like

in some way . '
12 0.030 ferko recognised the 0.50 queen 0.17 bee , and said , ` alas
13 0.003 how could you help 0.88 me ?
14 0.023 for i have been set to 0.16 do a task which no one in the whole

him be ever such 0.17 a 0.23 genius !
15 0.651 to-morrow i must build 0.44 a 0.22 palace more beautiful

must be finished before evening . '
16 0.004 ` is 0.25 that 0.25 all ? ' 0.33
17 0.071 answered the bee , ` then you may comfort yourself ; for before

18 0.004 just stay here till i come again and tell you that it 0.10 is 0.14
19 0.031 having said this she flew merrily away , and ferko , reassured

Question:
early on the following day the whole town was on its feet , and everyone

were turned on the
handsome and the king 's 0.34 daughter herself was lost in admiration , for she

to their fear 0.18 , so

wicked magician , who
had come to the palace with the intention of carrying off the 0.10 princess . 0.16

are accused of being a,
magician who wishes to rob me of my daughter , and i condemn you
can fulfil three tasks which i shall set you to do your life shall be spared

to 0.34 death ; but
, on condition

suggest something for

in 0.10 one day a
beautiful 0.17 palace 0.11 than this , and if he fails in the attempt let him be

commanded ferko to 0.11

had now got rid of 0.11

the hour he had

the 0.14 palace 0.13 ,
wondering how he could escape 0.16 being put to 0.26 death , a little bee flew past ,

to 0.36 show my gratitude

!

world could do , let

than the king 's 0.15 , and it

the sun goes down to-
morrow night a 0.23 palace shall be built unlike any that 0.32 king has dwelt in before .

finished . 0.32 ' 0.16
by her words , lay down

on the 0.19 grass 0.30 and 0.16 slept peacefully till the next morning .

wondered how and
where the stranger would build the wonderful xxxxx .

Candidates:
admiration 0.000 domain 0.000 help 0.000 jealousy 0.000 matter 0.000 one 0.000
palace 0.999 proposal 0.000 something 0.000 task 0.001

Answer:
palace

youth ,
,

,

(...)

(...)

`

,, `
(...)

(...)

if

(a) HAN-doc-vec

Question:
early on the following day the whole town was on its feet , and everyone wondered how and
where the stranger would build the wonderful xxxxx .

Candidates:
admiration 0.000 domain 0.001 help 0.000 jealousy 0.000 matter 0.000 one 0.000
palace 0.998 proposal 0.000 something 0.000 task 0.001

Answer:
palace

00 0.006 no sooner had ferko entered

01 0.001 his brothers noticed this , 0.19

02 0.079 they went to the king and told

03 0.013 then the king had ferko brought

04 0.001 and turning to the two wicked

05 0.210 they did not think long , but replied

06 0.005 the king was 0.15 pleased with
the following day . 0.33

07 0.002 the two brothers were delighted
ferko for ever . 0.46

08 0.005 the poor youth 0.30 himself was
the boundary of the king 's domain . 0.22

09 0.039 as he was wandering disconsolately
10 0.001 can i 0.13 be 0.19 of any help
11 0.006 i am the bee whose 0.12 wing

some way 0.14 . 0.36 '
12 0.001 ferko recognised the queen bee 0.40
13 0.000 how could 0.19 you help me ? 0.59
14 0.012 for i have been set to do a task

let him be ever such a genius ! 0.13
15 0.347 to-morrow i must build a palace 0.88

16 0.008
finished before evening . '

17 0.230 answered the bee ,
is 0.17 that 0.60 all ? 0.14 '

` then you

18 0.034 just stay here till i come again
19 0.002 having said this she flew merrily

the palace 0.25 than all eyes were turned on the
handsome youth 0.20 , and the king 's daughter herself was lost in admiration , for she

and envy and jealousy were added to their fear , so
much so that 0.11 they determined once more to destroy him . 0.40

him that ferko was a wicked magician , who had come
to the palace 0.69 with the intention of carrying off the princess . 0.12

before him , and said , ` you are accused of being a
magician who wishes to rob me of my daughter
fulfil three tasks which i shall set you to
country 0.29 ; but if you can not perform

, and i condemn you to death ; but if you
do your life shall be spared , on condition you
what i demand you shall be hung on the

brothers he said , ` suggest something for 0.17 him to

,
do ; no matter how difficult , 0.21 he must succeed in it or die . 0.18 '

let him build your majesty in one day a more
beautiful palace 0.96 than this , and if he fails in the attempt let him be hung . '

this proposal , and commanded ferko to set to work on

, 0.12 for they thought they had 0.11 now got rid of

heart-broken , and cursed the hour he had crossed

about the meadows round the palace 0.59 ,
to you ? 0.33
you healed , and would like to show my gratitude in

, 0.25 and said , ` alas !

which 0.19 no one in the whole world 0.22 could do ,

more beautiful than the king 's , and it must be

may comfort yourself ; for before the sun goes down to-
morrow night a palace 0.70 shall be built unlike any that king has dwelt in before .

and tell you that 0.31 it is 0.22 finished 0.11 . 0.20 '
away , and ferko , reassured by her words , 0.21 lay

down on the grass and slept peacefully till the next morning . 0.26

`

(...)

(...)

(...)

(b) HAN-ptr

Fig. 5. Illustration of an example document and the calculated word (blue) and sentence (red) attention values. All attention values above 0.1 have been
inserted and marked in the text document. For the HAN-ptr, the overall attention of each word is its word attention multiplied with the sentence attention.
The right answer is “palace”.

document as shown in Fig. 6. We found that the RAN and the
HAN-doc-vec show particular strengths for longer documents
on common nouns and shorter documents on named entities,
while the HAN-ptr provides the best results independent of
the document lengths. From detailed data analysis we have
indications that these differences are due to the focus of
RAN and HAN-doc-vec on specific words and sentences in
the documents, which were particularly informative for longer
documents on common nouns and for shorter documents on
named entities, while HAN-ptr is a bit more independent of
the document structure.

F. Visualizing the Attention

In addition to our previous analysis on the attention dis-
tributions, we inspected the attention values in detail. Two
such examples can be seen in Fig. 5. In the shown document,
both the HAN-doc-vec and the HAN-ptr manage to correctly
identify the right answer. The HAN-ptr, however, focuses
on punctuation and stop words noticeably often (see also
Sec. III-E). Although this observation seems counter-intuitive,
this model, interestingly, is able to create large attention on
the relevant sentences in which the answer word is contained.
Other candidates such as “task” (e.g. sentence 14 in Figure 5b)
receive little to no attention even though they are prominently
displayed in the text. This indicates that the generation of
mostly “useless” attention values, does not seem to have a
major influence on the accuracy of the networks. For the HAN-
ptr, this can be explained by its final step in which all attention

values are discarded, except for those of the candidates. This
could mean that the HAN-ptr explicitly focuses on stop words
and punctuation in the absence of embeddings which are
semantically related to the candidates, as this would never
decrease the loss.

For the HAN-doc-vec and RAN approach, frequent words
that do not share any context with the candidates, are also
effectively discarded due to the final dot product which
measures the similarity between document representation and
the question. In this model, “noisy” attention on frequent
words can also be observed (e.g. “the” and “to” in Figure 5a).
However, the trainable candidate embeddings seem to play
an important role as the network is very certain of the right
answer “palace”, even though the word itself receives little
attention in the entire document. Note that the attention for
the 15th sentence is very high. This means that, even though
on word-level “palace” receives little attention, the network
was able to localize the correct answer with high certainty
from its surrounding context and encode this into its sentence
representation.

However, the examples also show that the sentence attention
mostly serves to identify the location of the answer on sentence
level. Different to the word level with its embedded context
vectors, the sentence level encodings do not seem to relate
or complement each other. This may be one of the reasons
why the hierarchical models improve the performance only to
a limited extent.
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Fig. 6. Average test accuracy for different bins of document lengths.

IV. CONCLUSION

In this paper, we have evaluated how Hierarchical Attention
Networks can be used for cloze-style question answering tasks.
We have presented two approaches for building hierarchical
representations based on attention mechanisms. Our results
indicate that a hierarchical structure itself does not always nec-
essarily lead to better training but that it depends on how the
information from the hierarchical representations is aggregated
at the output layer. The pointer sum method has shown itself
to harmonize well with the hierarchical architecture in our
results. Notably, our results show that recurrent hierarchical
models for complex tasks can be designed with a comparably
low parameter count and relatively fast training times.

When examining the sentence attention, it can be seen
that the attention values themselves mostly correlate with the
likelihood of containing the correct answer. This seems to
help training, especially for the ptr model which weights word
attention with this likelihood.

One limitation of our approach is that we assume the output
answer to be contained in the document. On the other hand,
the pointer sum attention is specifically designed for this setup
[5]. Additionally, we assume that the network can be provided
with candidates, i.e. in the introduced form, our models are
able to be trained with cloze-style datasets but would require

external knowledge or the generation of candidates for more
open questions. Future work should therefore concentrate on
evaluating our approach on different types of QA datasets.
For example, one could continuously sample from the output
layer in order to generate answer sentences from the pointer
sum attention model. Related work has also shown that gated
attention mechanisms and character-level representations can
drastically improve task performance [18]. Therefore, we plan
to introduce a character level to the Hierarchical Attention
Network in the future.
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