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I. INTRODUCTION

Humans develop cognitive functions from a body-rational
perspective. Particularly, infants develop representations
through sensorimotor environmental interactions and goal-
directed actions [1]. This embodiment plays a major role
in modeling cognitive functions from active perception to
natural language learning. For the developmental robotics
community, working with humanoid robotic proxies, datasets
are interesting that provide low-level multi-modal perception
during the environmental interactions [2].

Related Data Sets: In the last years, many labs made
considerable efforts to provide such datasets, focussing on
different research goals but also taking technical limitations
into account. Examples include: the KIT Motion-Language
set for descriptions of whole-body poses [3], the MOD165
set of a gripper-robot having vision, audio, and tactile senses
for interacting with objects [4], the Core50 set focussing on
human perspective and vision [5], and the similar but up-
scaled EMMI and iCubWorld sets [6]. However, none of these
corpora provide true continuous multi-modal perception for
interaction cases, as we would expect an infant is experiencing.

In this preview, we introduce the Embodied Multi-modal In-
teraction in Language learning (EMIL) data collection, an on-
going series of datasets for studying human cognitive functions
on developmental robots. Since we aim to utilize resources in
tight collaboration with the research community, we propose
the first set on object manipulation for fostering discussions
on future directions and needs within the community'.

II. DATASET CHARACTERISTICS

In this first set, the developmental robot NICO is mimicking
an infant that interacts with objects and receives a linguistic
label after an interaction. The interaction follows usual inter-
action schemes of 12-24 month-old infants on toy-like objects.

Developmental Robot Setup: In developmental robotics,
the goal is to study human cognitive functions in conditions
of human infants interacting in natural environments [2].
These conditions include embodied interaction with natural
motor and sensing capabilities of an infant and multi-modal
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sensations within active perception [7]. For our data recording,
we developed a child-like humanoid robot and utilize it in
scenarios that resemble natural infant environments, such as
in playing with objects at a table.

Interactive Robot NICO: Our developmental robot is
the Neuro-Inspired COmpanion NICO [8], which is mainly
aimed for research on multi-modal human-robot interaction
and neuro-cognitive modelling. NICO includes two HD RGB
cameras, stereo auditory perception, and interaction capabili-
ties of a 3.5-year-old child, including six DOF arms and hands
with multi-grip fingers and tactile sensors. In interactions with
objects, the robot’s hands as well as the whole upper body
provide perception on a sensorimotor level and at the same
time introduce the interaction imprecision and self-occlusion
in a way our infants show.

Recording: In the setup, NICO is seated in a child-sized
chair at a table, interacting with the right hand and facing the
head downwards during the experiment, while a human places
a small object on the table at a fixed position (see Fig. 1). A
predefined action is carried out on the object, e.g., lifting it
up or scooting it across the table. During the robot’s actions,
a continuous multi-modal recording encompasses continuous
streams of visual information from the left and right robot
camera as well as from the external experimenter, stereo audio
information, and proprioceptive information from the robot’s
body. Finally, the experimenter provides a linguistic label.

III. IMPACT AND RESEARCH OPPORTUNITIES

Our continuous, multi-modal, and particularly body-rational
data allows for studying a large range of algorithms on funda-
mental classification or prediction tasks. This includes object
recognition and tracking, action recognition, and question
answering. Moreover, the dataset is aimed at research in a
range of state-of-the-art research topics.

Active Perception: The different actions and objects allow
to build up a training scheme within a model by selecting to
experience a certain interaction because the model estimates
that this provides the highest information gain or reduces un-
certainty. In humans, we find the tendencies that a perception
choice or a specific action is voluntary [9]. Thus, the dataset
is suited for developing models that aim to explain how the
sensory input gathered from an object with different, multi-
modal sensors changes based on the robot’s actions.
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b) Visual perception (right).
Fig. 1: Characteristics of the EMIL dataset: Continu

Cross-modal Representation Learning: Since the differ-
ent recorded modalities include information about the same
object and interaction quite differently, the dataset is suited
to study algorithms on multi-modal and cross-channel rep-
resentation learning. For some objects and actions the data
contains salient features in a certain modality, while for others,
all modalities are necessary for disambiguation. This allows
studying mechanisms on sensor fusion, superadditivity, and
hierarchical composition in addition to embodied representa-
tion formation on the cortex-level [10].

Developmental Language Acquisition: A research ques-
tion related to representation learning is natural language
acquisition since representations for language production and
language perception in the human brain seem to form em-
bodied and cross-modally integrated [1], [2]. The dataset is
therefore particularly suited for research on the grounding of
language in sensorimotor perception because the recording
diligently followed the developmental robot approach [11].
Mechanisms for representation formation and bidirectional
hierarchical composition and decomposition can get tested in
the biologically plausible setting.

As a second step, this allows extending this dataset by much
larger parts of abstract and ungrounded linguistic input, in a
fashion that parents would provide verbally or with the aid of
a storybook to their infant [12]. Here, language acquisition
models can get studied for how they integrate additional
knowledge into their grounded representations, but also how
a teaching application can provide suitable teaching content.

Livelong Learning: The dataset is suited to provide
evaluation data for (neural) lifelong learning approaches [13].
An initial subset of the training data can be selected that
is limited to a few types of objects, actions or just a low
number of samples. Over the course of time, life-long learning
experiences can be simulated by adding more and more parts
of the data-set to the learning.
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ous multi-modal recording of interactions with objects.

IV. CONCLUSION

The proposed data collection EMIL aims at providing
researchers from the developmental robotics and related fields
the opportunity to research into intriguing questions around
human cognitive functions. For the workshop, we invite re-
searchers to jointly develop the future data sets to come.
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