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a b s t r a c t 

Tracking arbitrary objects in natural environments is a challenging task in visual computing. A central 

problem is the need to adapt to changing appearances under strong transformation and occlusion. We 

propose a tracking framework that utilises the strength of Convolutional Neural Networks to create a ro- 

bust and adaptive model of the object from training data produced during tracking. An incremental up- 

date mechanism provides increased performance and reduces the computational costs for training during 

tracking, allowing for robust real-time tracking with state-of-the-art performance. Together with optimi- 

sations for deploying the framework on humanoid robots and distributed devices, this shows its viability 

for research in developmental robotics on questions around infant cognition or active exploration. 

© 2019 The Authors. Published by Elsevier B.V. 
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. Introduction 

The process of tracking the changing position of an object is

 very fundamental problem in the fields of computer vision as

ell as artificial intelligence and has been studied for a long time

1–3] . It is an important task in the area of intelligent devices

nd robotics, as tracking objects visually is often a prerequisite for

omplex tasks. For example, a developmental robot can learn the

ffordances of a manipulated object by correctly keeping track of

his object’s change, while for an autonomous car keeping track of

ther vehicles and pedestrians in the streets can help planning a

oute and avoid collisions [4] . However, the visual tracking of arbi-

rary objects in a video stream is still a difficult task because the

bjects’ appearances may change over time [5] . 

To overcome these challenges, an object tracker needs a mech-

nism for identifying and extracting robust features from a video

tream. It also needs a flexible method for learning a model of the

bject’s representation using a scarce supply of training data and

dapting it dynamically over time. Previous attempts to provide

uch functionality include integrating Convolutional Neural Net-

orks ( CNNs ) for feature extraction and learning the object’s vi-

ual representation. For instance, the Fully Convolutional Network

ased Tracker ( FCNT ) [6] uses the convolutional part of VGG16
∗ Corresponding author. 
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7] to extract visual features from a video stream and trains an- 

ther small CNN on those features. In this approach, both the

nal and a penultimate convolutional layer were used as out-

uts since their features contribute different discriminating abil-

ties. Thus, the object tracking adopts object feature models that

esulted from training with huge object recognition databases. To

mprove the quality of the object representation, other algorithms

nclude using pre-trained R-CNNs for feature extraction [8] , train-

ng features in CNNs while tracking [3] , or creating negative train-

ng samples by taking false locations around the correct position

9] . Nevertheless, these approaches suffer from weak update selec-

ion schemes, making them prone to using poor samples and at

he same time particularly complex, preventing any real-time ap-

lication. Other approaches that prepare adaptive silhouette mod-

ls for specific shapes, such as humans, in order to provide robust

racking [10] , need depth information that is in most cases not

vailable. 

In this paper, we comprehensively describe HIOB , a HIerarchical

nd modular OBject tracking framework 1 , and provide profound in-

ight into employing HIOB in developmental robot scenarios. HIOB

s a CNN-based tracker that consist of highly optimised compo-

ents for feature extraction and components that train and update

pecific object models during tracking conditioned by the tracking

onfidence. Since HIOB is supposed to provide robust tracking, par-

icularly under occlusion and distortion conditions, for real-time
1 We first introduced HIOB as a contribution to ESANN2018 [11] . 
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Fig. 1. Overview over the HIerarchical modular OBject tracking framework HIOB. 
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applications, it is optimised for performing well and at the same

time remaining computationally efficient. This allows employing

HIOB 

2 in the developmental robotics scenario and thus enables

such a robot to actively explore and learn in real environments and

real time. 

2. Hierarchical modular object tracking 

Our proposed framework is an extension of the FCNT intro-

duced by Wang et al. [6] . It combines the feature extraction ca-

pabilities of a pre-trained CNN ( pCNN ) with the flexibility of an

online CNN ( oCNN ). This allows to rely on model features ob-

tained from training on huge object recognition datasets, but also

to quickly create and update specific object models during track-

ing. An overview of the framework is provided in Fig. 1 . 

2.1. Initialising the tracking 

The tracking is initialised with a bounding box around the given

position of the object in the first frame F 0 . Next, the captured im-

age is cropped to the region of interest ( ROI ) and scaled to a fixed

size s , e.g. s = 368 × 368 , which introduces a trade-off between

computational complexity and precision. This so-called SROI pro-

vides the input into the pCNN that consists of the convolutional

part of the VGG16 [7] . In particular, the last convolutional layer

conv5_3 and an earlier layer conv4_3 are used for feature extraction

and selection, since they have been shown to describe different vi-

sual aspects well [6] . Here, other options are possible as well, such

as using ResNet [12] or context-specific feature models, depending

on the desired constraints for accuracy and speed as well as the

computation framework. A target heat map regression analysis is

used to identify those features that have the strongest relevance

for locating the object and thus to reduce the number of features

from 512 per output layer to 384. The selected filters are used as

input for the oCNN that consists of two convolutional layers, of

which the first layer includes 32 filters with a kernel size of 9 × 9

and connects with a concatenated ReLU to the second layer that

comprises a single 5 × 5 filter. Finally, the oCNN is trained to pro-

duce the prediction mask in the form of a 2D-Gaussian, cropped

to the object’s bounding box on a 46 × 46 array. Since the object

is arbitrary and not known a priori, this bounding box is the first

and only data point. 
2 The complete implementation of the HIOB framework is available at https:// 

github.com/kratenko/HIOB . 

c  

r  

t  

o  
.2. Tracking 

During tracking, for each following frame F t , t > 0 the captured

mage is cropped around the last known position of the object,

caled, and fed as input to the pCNN, similar to the initialisa-

ion step. The resulting 2 × 384 features are used as input to the

CNN to produce a 46 × 46 mask for predicting the most probable

reas of the object’s position. This mask is normalised to values

ithin [0, 1] and integrated into a mask M 

t representing the po-

ition in the full-sized captured image. On this prediction mask, a

arge number c of candidates for a new bounding box is created

y altering the last predicted bounding box randomly, according

o a Gaussian distribution. The number c is again a trade-off be-

ween computation effort and precision, but a large number of,

.g., c = 1 , 0 0 0 candidates is reasonable because the creation and

valuation can be done in parallel, similar to the calculation of fil-

er kernels. For each candidate X t n a confidence value con f 
t 
n is cal-

ulated, with A (X t n ) being the size of X t n in pixels and M 

t ( j ) the

robability predicted by the oCNN for pixel j : 

on f 
t 
n = 

∑ 

j∈ X t n M 

t ( j) 

A (X 

t 
n ) 

(1)

he candidate with the highest confidence is used as the pre-

icted position X 

t and its confidence is used as that prediction’s

onfidence conf t . If no candidate is rated above the threshold

in _ con f = 0 . 1 , the previous position is kept ( X t = X t−1 ) and the

onfidence is set to con f 
t = 0 . 

After each prediction, based on an update strategy, the sample

s considered for updating the model. In this case, the sample is

ppended to a FIFO cache, storing the last 10 selected samples,

nd a single update iteration of the model is executed in its cur-

ent configuration. Independent of the course of the tracking, the

ample obtained from the initial frame is always kept in the cache

ecause it is the only reference guaranteed to be of good quality.

his way the oCNN adapts to any morphology change in the ap-

earance of the object. 

.3. Update Strategies 

Deciding which samples are used for updating the model is

ritical for the success of the tracking. The algorithm must be able

o adapt to changes in appearance to create a solid model, but at

he same time must avoid samples of poor quality as they can

orrupt the model. Ideally, the updates should provide all occur-

ing perspectives and object appearances under occlusion and mo-

ion. However, it is not necessarily possible to inform the algorithm

f a perspective that is particularly good , because it cannot grasp

https://www.github.com/kratenko/HIOB
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Fig. 2. Preliminary evaluation of computation times for HIOB components after op- 

timisation (FPS = 10 0 0/ms). 
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3 https://www.tensorflow.org/ . 
4 https://www.ros.org/ . 
5 Prepared Docker image ( https://www.docker.com/ ) using ROS: https://github. 

com/theCalcaholic/HIOB-ROS . 
6 Consumer machine: NVidia GTX 970, Intel i5-6600k; High-performance GPU: 

NVidia TitanXp, Intel Xeon E4-2620. 
he full object’s characteristic a priori. As good heuristics, updates

hould be triggered by a prediction with a low confidence conf t ,

hich indicates a change in appearance. Utilising a lower bound

or the confidence of samples prevents poor quality data from dis-

orting the model, e.g., because the tracker clearly lost the object

or a moment. As another heuristics, updates should also get en-

orced after a certain number of frames δt without changes to the

odel, to ensure that it is kept up to date. In this work, we explore

ix update strategies in detail in order to understand the impact of

hese heuristics: 

• None – the model remains as trained for the initial bounding

box. No further updates are executed on the model, thus the

strategy comes at no computational cost but has no opportu-

nity to reflect changes, and serves as a baseline. 

• Full – update on every frame, thus maximising the available

training data by including all changes over time. This strategy

explores the opposite extreme to None . 

• Static – update after a fixed number of δt = 20 frames, to re-

duce the training effort and attempting to still include rea-

sonable changes of the object’s morphology in an uninformed

manner. 

• Dynamic – update when the appearance is considerably differ-

ent to the trained model, measured by the confidence conf t be-

ing lower than 0.4, to include changes in an informed way. 

• Low Confidence Combined (LCC) – update in case of low confi-

dence conf t ≤ 0.4 combined with enforcing updates for δt = 20 ,

based on Wang et al. [6] . 

• High Gain Combined (HGC) – update high gain cases: low but

not too low confidence 0.2 ≤ conf t ≤ 0.4, avoiding poor samples,

enforced for δt = 20 . 

. HIOB for developmental robotics 

To utilise an object tracker, such as HIOB, in real-world tasks in

eneral and on a developmental robot in particular, we must take

he constraints and the context of real-world tracking into consid-

ration. In order to allow for real-time processing, we also prelimi-

arily studied the trade-offs as mentioned above and enhanced the

IOB framework implementation and deployment. 

.1. Conditions and context of object tracking 

In developmental robotics research, the goal is to study human

ognitive functions in settings that resemble the conditions of hu-

an infants interacting in natural environments [13] . These con-

itions include embodied interaction, thus interacting with natural

otor and sensing capabilities of an infant as well as integrating

he multi-modal sensations within active perception [14] . For our

racking, this means that we need to be able to rely on standard

GB vision, because young infants are still developing a sense for

epth based on stereo vision, as well as on fast, thus real-time pro-

essing. 

The embodied interaction in natural environments also intro-

uces particular properties of the context. Infants, and thus devel-

pmental robots, often interact with objects by grabbing, shaking,

nd scooting them, and are in the process of developing object

ermanence despite introducing strong motion and motion blur,

s well as partial or full occlusion [15] . Thus, our tracking must

e able to handle these contexts well in order to be feasible for a

road range of research questions such as active perception, lan-

uage acquisition, and higher-order planning. 

.2. Enhancing HIOB for real-time tracking 

In HIOB, therefore, we took great care to realise the framework

or real-time applications on a robot that is equipped with RGB
ision. Overall, the framework is implemented in Python and Ten-

orflow 

3 , which allows for accessible prototyping and at the same

ime particularly fast processes for redundant computations within

UDA stream processors. Notable optimisations have been done in

he feature extraction, feature selection and prediction candidate

eneration and evaluation. Additionally, we wrapped the frame-

apturing and computing processes as (optional) ROS 4 nodes, in

rder to allow an easy deployment for a range of robot devices

nd computers 5 . 

For a preliminary evaluation, we tested HIOB for live track-

ng on our robot platform under different SROI sizes s , in order

o gather insights into computational effort under realistic con-

itions. We used the vision from the robot and ran the calcula-

ions on either a consumer machine or a high-performance GPU

erver 6 . Fig. 2 presents the overall and component-wise compu-

ation times over both systems. A notable outcome is that the

ully tensor-graph-based feature extraction heavily benefits from

he GPU as expected, while the feature selection and candidate

valuation, which are both mixtures from parallel python calls

nd tensor computations, still gain from good CPU core speed.

verall this test shows that HIOB can get operated with stable

1–17 frames per second ( FPS ) for reasonable SROI sizes on HD

esolution. 

.3. NICO-object interaction data 

A recent example of a developmental robot is the Neuro-

nspired COmpanion NICO , which is used in research on

ulti-modal human-robot interaction and neuro-cognitive mod- 

lling [16] . NICO includes two HD RGB cameras and interaction ca-

abilities of a 3.5-year-old child. In interactions with objects, the

obot’s hands are naturally introducing huge occlusions, making

he tracking of object manipulation effects from the visual perspec-

ive difficult. 

To employ NICO as a test-bed, we recorded 60 object-hand in-

eractions, with frame rates as described above. The recordings

nclude different push, pull, grasp, and lift actions on a broad range

https://www.tensorflow.org/
https://www.ros.org/
https://www.docker.com/
https://www.github.com/theCalcaholic/HIOB-ROS
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Fig. 3. The NICO robot in the object interaction setup and representative examples 

of its vision and tracked objects under occlusion (bottom-left) and with difficult 

shape and texture (bottom-right). 
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7 Current results: http://tracking.cs.princeton.edu/eval.php . 
of toy objects that show diverse behaviour when interacted with,

such as rolling away, bouncing on the table, or changing their mor-

phology. Accordingly, we manually annotated all recordings to cap-

ture the object shape by an exact rectangle (see Fig. 3 ). 

4. Evaluation and analysis 

On the one hand, we want to measure the performance of our

framework in a comparable fashion on challenging datasets and

live benchmarks. In particular, we need to measure the strength of

the modular approach and the update strategies on a broad range

of scene characteristics. On the other hand, we want to analyse in

depth, how the mechanisms of online updates impact on the track-

ing and preservation of a suitable object model. 

4.1. Performance 

For the performance tests, we used the extension of the es-

tablished Online Object Tracking Benchmark ( OOTB ) by Wu et al.,

which includes 100 tracking sequences with up to 3872 frames and

metrics for evaluation [17] . Here, the precision metric measures the

Euclidean distance between the predicted bounding box position

and the ground truth, while the success metric measures the in-

tersection in proportion to the union and thus the overlap between

predicted bounding box and ground truth. 

Also, we participated in the Princeton Tracking Benchmark

( PTB ), which includes data and tests that are not publically

available for framework or model optimisation [5] . Finally, we

measured the tracking on our NICO-object interaction dataset to

compare the performance and success results on HD vision and re-

stricted frames per seconds with the other benchmarks. 

4.1.1. Online object tracking benchmark 

We used the OOTB to evaluate the six update strategies. Table 1

provides the results on individual challenges included in the

benchmark. Strategy None illustrates how HIOB performs without

adaptation of the model during tracking. The poor performance by

the Full strategy shows that more updates are not necessarily an

improvement. Periodic updates with the Static fall short if an ob-

ject was occluded, out of view, or blurred, while updating with the

Dynamic strategy tends to update to an extent that the model is

no longer able to provide good predictions. 
LCC produces comparable results in both frameworks, FCNT and

IOB, as plotted in Fig. 4 . The tracking of HIOB is much smoother

ompared to FCNT because it uses a single training step on updates

hile FCNT reinitialises its network and executes 50 training steps

or every update. An analysis of failed trackings shows that the

odel is often disrupted by poor quality samples in the training

ata. These errors are amplified by the generation of additional er-

oneous predictions. HGC avoids this corruption by discarding sam-

les of very low confidence. The result is a higher tracking perfor-

ance with even fewer model updates. A significant performance

ncrease can be seen for tracking sequences that include an occlu-

ion of the object or motion blur, which is likely to produce erro-

eous training samples (compare Table 1 ). 

.1.2. Princeton tracking benchmark 

On the PTB 

7 , the HIOB framework ranks third out of 15 recent

rameworks on the RGB challenge (not using depth information).

t achieved the best results for the “animal” (72.5%) and “rigid”

78.2%) target types and ranks overall among the top three in all

ategories. A reason for not being able to compete with the top

wo for the “human” (53.1%) target type seems to be the fact that

hese frameworks were particularly optimised for shapes like hu-

an poses by using RGB-D information [10] . The results also in-

icate that HIOB is particularly good in non-occlusion (84.5%) and

till quite good in occlusion cases (52.9%) that appear to be a major

ifficulty for all frameworks. 

.1.3. NICO scenario tracking test 

Using the NICO object interaction data we evaluated different

ROI sizes restricted by the frame per second rate that was ob-

ained in the preliminary speed comparison. Fig. 5 presents the

recision and success results, indicating that an SROI of s = 360 ×
60 provides the best trade-off even for this resolution, even for

otable cases of motion. We also found that an extreme change of

he object size is the most likely case for a failed tracking, whereas

cclusion and motion cases are usually accurate. Another finding

as a notable difficulty in tracking very thin objects with a poor

exture. Both observations, as well as the measured success values,

ndicate that the bounding box was not fitting the object well, al-

hough overall the tracking went well. 

.2. Case studies 

The improved strategy HGC and the technical realisation was

eveloped by analysing cases of particularly difficult object mor-

hology and of failed trackings. We studied many cases from the

ategories above and in the following will present the most repre-

entative and insightful ones. 

.2.1. Motion in the OOTB 

A common issue in the OOTB is fast motion and motion blur

ecause it severely disrupts the model for the baseline update

trategies. Fig. 6 illustrates how poor quality samples result in

odel corruption. In Fig. 6 b, rapid camera movement and the re-

ulting motion blur produces a misplaced prediction. Because of

he low confidence, an update is executed, training the model to

redict a position behind the tracked person ( Fig. 6 c). With the

GC strategy, the updates are prevented until a less blurry image

n a later frame, seen in Fig. 6 d, produces a better training sam-

le that gradually updates the model to recognise the person in a

lurry image. 

http://tracking.cs.princeton.edu/eval.php
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Table 1 

Precision (left) and success (right) on individual attributes over different update strategies in HIOB. 

Attribute None Full Static Dynamic LCC HGC None Full Static Dynamic LCC HGC 

All 0.653 0.469 0.791 0.766 0.796 0.840 0.489 0.356 0.548 0.535 0.541 0.566 

Background clutter 0.579 0.477 0.748 0.693 0.750 0.790 0.424 0.363 0.518 0.494 0.503 0.519 

Deformation 0.561 0.452 0.716 0.620 0.646 0.733 0.441 0.306 0.513 0.440 0.456 0.506 

Fast motion 0.598 0.547 0.718 0.790 0.768 0.794 0.513 0.419 0.576 0.598 0.609 0.625 

Motion blur 0.599 0.471 0.808 0.646 0.720 0.847 0.549 0.401 0.604 0.584 0.595 0.681 

Low resolution 0.719 0.575 0.838 0.941 0.948 0.936 0.365 0.183 0.432 0.432 0.432 0.423 

Occlusion 0.599 0.410 0.735 0.681 0.724 0.800 0.464 0.328 0.512 0.494 0.500 0.553 

Out of view 0.608 0.344 0.712 0.662 0.773 0.814 0.505 0.326 0.572 0.591 0.613 0.642 

Scale variation 0.624 0.378 0.776 0.739 0.772 0.845 0.448 0.292 0.505 0.488 0.490 0.534 

Fig. 4. Comparison of different update strategies in the HIOB framework versus the FCNT framework on the OOTB using the conventional metric as described in [17] , with 

20 pixels as the threshold for “good”. The LCC strategy was tested in the original FCNT implementation from Wang et al. [6] , and replicated within HIOB; HGC presents our 

proposed high-gain strategy. 

Fig. 5. Comparison of different SROI sizes in the HIOB frameworks on the NICO dataset, using 40 pixels as the threshold for “good”. 
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.2.2. Occlusion in the OOTB 

Another difficulty was occlusion and distraction, such that the

bject or a large portion of it is occluded or even a second similar

bject occurs in the same region. In Fig. 7 we present how the

igh gain strategy leads to a continuous tracking despite a similar

bjects moving in front of the tracked object. Although the frames

etween the full visibility of the tracked object ( Fig. 7 b–c) include

trong occlusion, the tracking does not get distracted. 
.2.3. Motion, occlusion, and size in the NICO scenario 

In the developmental robot scenario with NICO, occlusion was

sually a strong factor in the first frames, where the robot ma-

ipulated the object. Depending on the characteristic of the ob-

ect (e.g., heavy with large friction versus round), different motions

ere observed showing the tracking remained accurate. However,

n extreme cases like fast falling thin and simple-textured objects,

he tracking could get lost (see Fig. 8 a–b). The previously observed
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(a) (b) (c) (d)

The LCC update strategy in-
creasingly leads to predictions of
low confidence, while HGC only
utilises samples with a high gain:
a) Initial frame shows a solid
prediction.
b) Misplaced prediction caused
by motion blur. Update executed
on prediction with conf = 0.
c) The model was trained to
predict the position next to the
object.
d) The HGC strategy waits for a
less blurry image to execute an
update.

Top: ROI with prediction in
yellow; Bottom: corresponding
prediction mask.

Fig. 6. Illustration of update strategies in HIOB under motion and motion blur. 

(a) (b) (c) (d)

Sample shows a particularly
difficult scene in low quality and
grayscale:
a) Second instance of tracked
object (helmet of a football
player) enters ROI.
b–c) Second instance strongly
occludes and distracts from
tracked object.
d) Tracking with HGC remains
on desired object.

Top: larger frame section with
ROI in cyan, prediction in yellow,
and ground truth in green;
Bottom: corresponding predic-
tion mask (most probable areas
of the object’s position), again
with prediction in yellow and
ground truth in green.

Fig. 7. Representative example of HIOB performing under occlusion and distraction. 

(a) (b) (c) (d)

Examples of trackings where the
size changed quickly w.r.t. the
initial frames.
a–b) Object with simple texture
was moved towards the camera
but suddenly dropped out of the
hand fast and got lost because
the change between two frames
was too drastic and not captured
within the SROI.
c–d) Strongly occluded object
was correctly tracked despite
model updates with small parts
only.

Top: ROI with prediction in
yellow and ground truth in green;
Bottom: corresponding predic-
tion mask.

Fig. 8. Representative examples of HIOB operating in extreme cases for size change plus motion or occlusion in the NICO scenario. 
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ases of huge size differences led to strongly reduced overlaps to

he ground truths and thus to a deterioration of the learned model

ecause of updates that include only parts of the objects. Never-

heless, if the texture was not too simple HIOB was able to handle

hese cases mostly well since the selected updates provided a good

bstraction of the object (see Fig. 8 c–d). This shows that the NICO

cenario introduces unforeseen conditions and the need for a bet-

er online adaptation of the bounding box. 

. Discussion 

We presented HIOB, a hierarchical modular object tracking

ramework, based on the FCNT algorithm by Wang et al. [6] . In-

egrating a pre-trained CNN with an on-line CNN allows running

heaper update steps for specific object models on top of a strong

eature extraction. The flexibility and effectiveness of the approach

how a good performance on recent benchmarks and at the same

ime allows for tracking in real-world and real-time settings. 

.1. Update strategy for tracking under occlusion and motion 

The strategy of updating the on-line CNN in cases of high

ain improved the performance notably, because it combines the

trengths of time-based and change-based samples, but miti-

ates negative effects. While updating only after a certain num-

er of frames reduces the computational costs during the other

rames [6] , it is clearly inadequate for fast changing object ap-

earances. A low confidence indicates that the model is inaccurate

or the current appearance, but could also mean that the object is

eavily occluded or subject to strong motion blur. In these cases,

he especially low confidence would likely cause poor samples that

ould deteriorate the model. Thus, in our high-gain update strat-

gy (HGC), these samples are avoided, showing a strong impact on

hese occlusion and motion cases, but still handling different mor-

hology well. 

.2. Tracking in real time for developmental robot settings 

With the flexible and modular design, HIOB is suited to inte-

rate different components for, e.g., feature extraction or candi-

ate generation, depending on needs for accuracy versus speed.

ovel models can be included similarly easy as novel realisations

f previously expensive tensor computations. For real-world ap-

roaches, such as in developmental robot scenarios [13] , these

odules, sensor-dependent parameters like the SROI size, and

ontext-dependent characteristics such as candidate numbers or

he target FPS, can be shaped for a good compromise. HIOB yields

op results in current benchmarks like OOTB and PTB but can pro-

ide a similar performance in our NICO-object interaction setting.

ere, the SROI size is particularly important because of the in-

reased computational costs in relation to the camera resolution

nd the scene characteristics, but with a good balance, high preci-

ion and success rates would be observed. 

.3. Future work 

In order to keep the computation time low and at the same

ime maintain or improve the precision of the tracking we can en-

ance the framework further in two directions. On the one hand,

e can adopt other recent and upcoming concepts for feature ex-

ractions and candidate generation. For example, including residual

onnections in the pre-trained layers has been shown to result in

imilar or higher accuracies on complex object recognition tasks

hile remaining computationally cheap. Networks such as ResNet-

0 or Inception-v4 have been shown to provide very good object
odels with a reduced computational complexity [12,18] . As an-

ther example, candidates can be generated by actually modelling

he object movement and detected occlusions [19,20] . 

On the other hand, the masking and prediction can get ad-

anced in order to more precisely reflecting the current object

hape. Currently, the bounding box is determined by choice, which

s given during initialisation of the tracking, in order to keep the

osts low by avoiding additional heuristics. This is fine for most

bjects, nevertheless, for extreme transformation such as scale in

erspective or rotation of long and slim objects, the model can

eteriorate. Thus, a viable solution is to create additional candi-

ate locations by slightly rotating as well as increasing or decreas-

ng each considered object location bounding box and evaluate its

core similar to the other candidates. These candidates would not

ean additional complex computations but yield feasible estimates

or changes over time. 

. Conclusion 

A continuous model for object tracking, such as our proposed

IOB, can achieve a performance comparable to models that are

onstantly reinitialised when the model utilises a smart update

trategy. Our suggested strategy prevents disrupting the model by

xcluding poor quality data samples and simultaneously reduces

he need for redundant updates. Since all components have been

ptimised for efficient and effective computation, HIOB is capable

f real-time tracking on normal consumer computers. Overall, this

eads to a significant improvement in the tracking performance and

hus opens up applications that demand fluent and robust track-

ng. This makes HIOB particularly interesting for the developmen-

al robotics community, where robots are simulating the develop-

ent of infants’ cognitive capabilities, including active perception,

anguage acquisition, and higher-order planning. 
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