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Abstract—Recurrent neural networks that can capture tempo-
ral characteristics on multiple timescales are a key architecture in
machine learning solutions as well as in neurocognitive models.
A crucial open question is how these architectures can adopt
both multi-term dependencies and systematic fluctuations from
the data or from sensory input, similar to the adaptation and
abstraction capabilities of the human brain. In this paper, we
propose an extension of the classic Continuous Time Recurrent
Neural Network (CTRNN) by allowing it to learn to gate its
timescale characteristic during activation and thus dynamically
change the timescales in processing sequences. This mechanism
is simple but bio-plausible as it is motivated by the modulation
of oscillation modes between neural populations. We test how
the novel Gating Adaptive CTRNNs can solve difficult synthetic
sequence prediction problems and explore the development of
the timescale characteristics as well as the interplay of multiple
timescales. As a particularly interesting finding, we report that
timescale distributions emerge, which simultaneously capture
systematic patterns as well as spontaneous fluctuations. Our
extended architecture is interesting for cognitive models that aim
to investigate the development of specific timescale characteristic
under temporally complex perception and action, and vice versa.

Index Terms—CTRNN, Recurrent Neural Network, Timescale,
Adaptive, Gating, Cognitive Model

I. INTRODUCTION

Recurrent Neural Network (RNN) architectures are an im-
portant building block in recent machine learning advances as
well as in neurocognitive modelling approaches. In machine
learning, key goals with huge potential for assistive systems
are learning representations from huge repositories of com-
plex temporal data, such as speech or dialogues, as well as
building algorithms that can make use of these representations
in understanding, translation, and discourse. Neural network
architectures are pursued that are specifically effective in cap-
turing events on multiple and strongly varying timescales and
include particular architectural constraints. For instance, re-
current networks with gating mechanisms are used to learn to
control the temporal extent and abstraction in order to capture
characteristics on multiple timescales in the data [1]–[4]. Here,
gating is directly integrated into the neurons’ activation and
optimised for circumventing the vanishing gradient problem in
gradient descent. Distinct hierarchical layer stacking has been
researched for many years as a way of constraining universal
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recurrent neural networks into a structure that is biased
towards learning temporally hierarchical dependencies [5], [6].

In computational neuroscience, mechanisms of processing
temporal information are studied in order to better understand
the most complex recurrent neural network: the human brain.
An open question is, which mechanisms are underlying the
processing of sensory input with complex temporal dynamics
as well as generating precise motor sequences from high-
level behavioural intentions in interplay with consistent world
models. As crucial mechanistic components, hypotheses from
neuroscience suggest neural oscillations, a highly complex
interplay of neural populations and local integrations by mode
coupling, and multiple timescales in hierarchical processing
streams [7]–[9]. However, it is vastly open, how these mech-
anisms are working on a computing and processing level.

In addition, biologically plausible artificial neural network
models on cortex level allow an investigation of the develop-
ment of cognitive functions as well as atypical information
processing characteristics in the brain [10], [11]. Specifically,
in interdisciplinary research in-between computer science,
cognitive psychology, and computational neuroscience, neural
models and simulations are used to explain effects in be-
havioural and brain imaging data [12]. Here, bio-plausible
recurrent neural models are adopted and studied in-depth
for replicating and extrapolating behavioural observations,
for example in studying people with psychiatric symptoms
including autism spectrum condition and schizophrenia.

In this paper, we propose a mechanism for RNNs that
allows for learning timescale characteristics from the data in
order to better capture both short-term fluctuations and long-
term dependencies. Specifically, we follow up on a previous
approach of adapting the timescale constant in Continuous
Time Recurrent Neural Networks (CTRNNs) while learning
from input sequences [13]. With a novel gating mechanism,
the neurons in this CTRNN can distinctly vary their timescales
based on presynaptic input. Since this mechanism is inspired
by the brain’s general adaptation as well as dynamic tuning to
sensorimotor information during learning sequential informa-
tion, it is a candidate for simulating the interplay of coupled
timescale modes and testing for the emergence of individually
different timescale structures. We explore our novel mecha-
nism on synthetic as well as behavioural prediction tasks in
order to investigate how timescale structures and dynamics
form based on the temporal characteristics in the data.
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Fig. 1. The neurons’ characteristics of the CTRNN variants: A timescale
value τ steers how strongly or weakly a neuron is leaking, thus how fast
or slow it is forgetting its previous activation. The ACTRNN introduces an
adaptive bias to the timescale, while the GCTRNN connects the timescale via
gates to the presynaptic input.

II. CONTINUOUS TIME RECURRENT NEURAL NETWORK
MODELS

One of the models that are seen biologically plausible is the
Continuous Time Recurrent Neural Network (CTRNN), which
can be derived from the leaky integrate-and-fire model and
thus from a simplification of the Hodgkin-Huxley model from
1952. For computational modelling, this network architecture
was independently developed by Hopfield and Tank in 1986
as a nonlinear graded-response neural network and by Doya
and Yoshizawa in 1989 as an adaptive neural oscillator [14],
[15]. The activation y of CTRNN units is defined as follows:

yt = f (zt) , (1)

zt =

(
1− ∆t

τ

)
zt−∆t +

∆t

τ
(Wx+Vyt−∆t + b) , (2)

for inputs x, previous internal states zt−∆t, weights W and V,
bias b, and an activation function f . The timescale parameter
τ expresses the leakage within a certain time ∆t. Thus in
tasks with discrete numbers of time steps, the CTRNN can
get employed as a discrete model, e.g. by setting ∆t = 1. In
this case, Equation 2 simplifies as follows:

zt =

(
1− 1

τt

)
zt−1 +

1

τt
(Wx+Vyt−1 + b) . (3)

A. Gated Adaptive CTRNNs

In the original definition of the CTRNN as a computational
model, the timescale can be a pre-determined constant param-
eter τ for all units or a vector τ of individual constants. On
this basis, a range of modifications are possible to directly
steer the timescales as an adaptive result of learning or even
an adaptive gating mechanism (see Figure 1).

In previous work [16], these individual constants have been
replaced by learnable weights a which work like adaptive
timescale biases for the neurons:

τt = τA
t = 1 + exp (a+ τ0) . (4)

This Adaptive CTRNN (ACTRNN) embeds the learnable a
in an exponential function to ensure that i) the timescales
stay in [1,∞] and ii) the neurons’ characteristics remain fully
differentiable. The vector τ0 allows for sensible initial values
for the timescales. After training, these adaptive timescale

Fig. 2. Effect of GACTRNNs: by changing their timescales during processing,
neurons can learn to simultaneously represent temporally different primitives.

biases lead a fine-grained distribution of timescale values over
all neurons.

As a novel extension, the timescales can be steered based on
weighted recurrent input by introducing additional recurrent
weights G directly to the timescale parameter:

τt = τG
t = 1 + exp (Gyt−1 + τ0) . (5)

In this Gated CTRNN (GCTRNN), these weights operate
as gates on the neuron’s leakage characteristic, effectively
controlling during activation whether the neurons should leak
strongly or weakly and thus quickly update their activations or
conserve their internal states for a longer time. Thus, compared
to the adaptive timescale biases, which are different for the
individual neurons but constant during activation, the gating
allows for arbitrary timescale changes in every time step.

In order to complete the gate characteristic, we can further
introduce additional weights H from the input and also include
the timescale biases a:

τt = τGA
t = 1 + exp (Hx+Gyt−1 + a+ τ0) . (6)

Consequently, this Gated and Adaptive CTRNN (GACTRNN)
can fully self-organise its leakage characteristic based on the
temporal dynamics.

B. Introducing Temporal Constraints

Alternative to defining one arbitrarily large recurrent layer,
the CTRNN and the novel GACTRNN neurons can be organ-
ised a priori in a constrained horizontal and vertical fashion.
For instance, in all proposed CTRNN variants (henceforth
called xCTRNN) the neurons can be grouped in horizontal
modules that are defined with specific fixed timescale con-
stants (in the CTRNN) or roughly initialised with reasonable
estimates (in the GACTRNN, for easing the training), where
a simple setup can be defined with exponentially increas-
ing values (τ = 1, 2, 4, . . . ). Additionally, these modules
can be interconnected recurrently using different connectivity
strategies such as dense (fully connected), adjacent (only
connected with the next slower and next faster module),
clocked (only connected to faster modules [17]), or partitioned
(no connections between modules). By these means, we can
enforce a structure of e.g. slower leaking neurons modulating
the activation of faster leaking neurons [16].



Analogously, we can divide the xCTRNN vertically into
different layers that are stacked or interconnected with short-
cuts and apply the same strategies for initialisation and
connectivity. Here, predefined timescales can exponentially
increase from the first vertical layer after the input up to
the last layer and thereby enforce a structure of hierarchical
decomposition or composition, similar to Multiple Timescale
Recurrent Neural Networks with context bias or context
abstraction (MTRNNs, compare [5], [9], [13]).

Thus, depending on the purpose of the computational model
and the task, the GACTRNN can overall be set up to learn both
connection weights and timescales from the input data only
or get an a priori constraint of a specific structure depending
on knowledge about the temporal dynamics in the data. In
effect, neurons can adjust their timescales to better represent
long-term or short-term dependencies (see Fig. 2).

III. EVALUATION

Conceptually similar to the Gated Recurrent Unit
(GRU [18]), the novel GACTRNN can learn to forget and
conserve internal states but remains closer to the biologically
plausible integrate-and-fire models. In order to provide an
exploration of the properties of the novel gated and adaptive
CTRNN architectures, we evaluated the different variants on
several prediction tasks with well-known or well-definable
temporal characteristics.

As a general architecture in this study, we defined networks
with one hidden layer, consisting of multiple modules. For
example, a layer of h = (m1,m2,m3) neurons means it
has 3 adjacent modules, where recurrent connections are
fully connected to each other (dense connectivity) or only
to neighboring modules (adjacent connectivity). All hidden
neurons were densely (fully) connected to the input, activate
with a TANH function, and connect densely to a linearly acti-
vated output layer. The same input and recurrent connectivity
patterns were set up for the timescale gates in the cases of the
GCTRNN and GACTRNN variants. During training, the loss
was calculated using a Mean Squared Error (MSE).

For all following tasks, we optimised hyperparameters such
as layer size and initial timescale on the CTRNN in order to
reduce bias. We systematically tested networks with 3, 4, and
5 modules of linearly or logarithmically increasing numbers
and initial timescales. In a subsequent test, we used the
same hyperparameters on the CTRNN, ACTRNN, GCTRNN,
GACTRNN, as well as the Simple Recurrent Network (SRN,
also known as Elman network), and the GRU. We repeat each
run 10 times with a new random initialisation of the network
parameters (weights) based on a random seed, which is exactly
the same for all model variants.

Our general hypothesis is that the xCTRNN variants per-
form better than the classical CTRNN because the adaptation
leads to a more fine-grained distribution of timescales and
the gating allows neurons to represent different temporal
characteristics simultanously. The purpose of also comparing
them to the SRN and GRU is to get a general intuition of
the difficulty in learning the task, where the SRN stands

Fig. 3. Prediction of the superposition of three sine waves with periods
100, 30, 12. Prediction is in open loop from time step 100 onward.

Fig. 4. Emergence of specific adaptive timescale distributions (biases) and
recurrent timescale gating matrix from uniform zero initialisation (last epoch).

for the naive approach and the GRU for the currently best
performing basic architecture with a gating mechanism in
machine learning tasks. Our aim for the analyses on the
following tasks is to explore emerging differences in timescale
characteristics and to inspect how these timescales affect the
activation and thus the performance of the networks.

A. Superposed Sine Wave

To test if the xCTRNNs can capture input patterns on
multiple timescales, in the first task we defined a sine
wave superposition (SSP) of three sines with amplitudes of
(1.0, 0.5, 0.75), periods of (100, 30, 12), and an overall length
of 200 steps. The networks’ task was to learn this SSP
sequence and predict it in an open-loop fashion from time step
100 onward (meaning no ground truth is fed in but only its
own output as recurrent input). The best performing CTRNN
was found with (4, 4, 4, 4) neurons in a dense connection,
timescales of (1, 6, 36, 216), and a learning rate of 0.001 using
RMSprop for training over 1.000 epochs.

This task is suitable because it is easy for any RNN to
memorize the sequence but very hard to capture the under-
lying characteristic of independent rhythms. Consequently,
we confirmed that both the SRN as well as the GRU are
generally not able to capture the underlying frequencies well
and tend to oscillate with a period close to the weighted mean
of our SSP’s periods and varying amplitudes. Fig. 3 shows
the predictions of the baseline networks, the basic CTRNN,
and the novel xCTRNN variants. We found that a good
prediction is still depending on the initialisation and the ideal
hyper-parameter setting to find the narrow region between
underfitting and overfitting. Here, a good timescale setting (in
case of the baseline CTRNN) seems to allow the network to
roughly capture the characteristics of the individual sines. The
xCTRNN variants do not show a significant improvement (or
degradation) with the same network sizes.



TABLE I
PERFORMANCE COMPARISON (MAE) IN LISSAJOUS CURVES

PREDICTION.

SRN GRU CTRNN ACTRNN GCTRNN GACTRNN
0.27281 0.04493 0.02109 0.01982 0.00678 0.00560
±0.00582 ±0.00566 ±0.00038 ±0.00042 ±0.00021 ±0.00011

CTRNN GACTRNN

Fig. 5. Prediction of Lissajous Curves with various periods p of 15, 25, 35,
and 45, where prediction is plotted from black to orange over time. For the
GACTRNN, the results for all periods are visually identical to p = 25.

In line with previous results [16], we observed in the
analysis that the adaptive CTRNNs are updating the timescale
bias during training towards a more diverse and fine-
grained timescale distribution, compared to the ideal constant
timescales of the CTRNN (see Fig. 4 on the left). In the
gating CTRNNs, a timescale gate matrix emerges that shows
transitive timescale modulation mostly for adjacent modules,
where the differences in the gate matrices for the GCTRNN
and the GACTRNN are small. It seems that neurons with a
certain timescale bias most strongly modulate the timescales
of neurons with not vastly smaller or larger timescale bias.

B. Lissajous Curves with Various Period Lengths

For further investigating how timescales are modified time-
step-wise in the gated CTRNNs, we defined a task with
systematic temporal differences, thus sequences with patterns
that extend differently over time steps. In particular, we
generated twelve Lissajous Curves similar to the study in [19]
but defined the three different resulting shapes with four
different periods p of 15, 25, 35, and 45 over lengths of 200
time. We hypothesise that to better solve the task, the networks
must learn the general characteristic of the three shapes as well
as the underlying primitives of different temporal lengths.

When inspecting the performance in prediction (in this
task for all 200 steps in a closed loop) we found clear and
significantly higher accuracy of the novel CTRNN variants
compared to the basic CTRNN as well as the SRN and GRU
baselines. These results were stable over the whole range
of investigated meta parameters, including architecture size,
shape, and initial timescale setting. For the CTRNN, found
the best results for (16, 8, 4, 2) neurons and initial timescales
of (2, 6, 18, 54), as compared in Tab. I for the mean absolute
error (MAE). In fact, the GCTRNN and GACTRNN seem to

GCTRNN

GACTRNN

Fig. 6. Effective timescales of the hidden layer neurons during predicting Lis-
sajous Curves with different period lengths. Highlighted box shows doubled
frequency of timescale oscillations for the 8-shape (best viewed zoomed-in).

solve the task nearly perfectly, where the baseline CTRNN
predicts with small deviations (see Fig. 5). Interestingly, the
predictions are mostly off in the beginning, which indicates
that the difficulty is related to the vanishing gradients and
predicting from the same starting point.

In analysing the effective timescales for the gated CTRNNs,
we observed a peculiar behaviour that shows strong differ-
ences between processing the different Lissajous Curves. As
shown in a representative example in Fig. 6, we can see that
the neuron’s effective timescales adapt to both the type of the
input shape as well as its period length p. This is indicated by
the timescale differences emerging from different curve shapes
(rows) and the frequency of the timescale oscillations decreas-
ing with increasing period lengths (columns). Additionally,
the timescale of many neurons alternate over time frames
corresponding to the periods of the respective curves. We can
also see that in the 8-shaped curves some neurons alternate the
timescales with about half the period, which is not visible for
the O-shaped or V-shaped curves. Structurally, the GCTRNN’s
neurons cluster into four different timescale regions (indicated
by the purple, blue, yellow, and red), while the GACTRNN
seems to develop a more specialised distribution of the middle
region, leading to a stronger manifestation of both small and
large timescales. This can be explained by the timescales
having a certain limit in their range, leaving the GCTRNN
to utilize the fixed initial timescale values a bit differently.



Overall, the observed timescale patterns indicate a tendency
of the gated networks to adapt to the specific timescale
patterns in the data. Firstly, adaptation occurs in terms of
conserving information about reoccurring patterns (as seen
by the timescale oscillation frequencies decreasing with in-
creasing period lengths). Secondly, only a few neurons change
the timescales slowly while a large number of neurons show
similar patterns of leaking strongly or conserving activation
to some extend (notably in the red and gray regions). This
might indicate that the ability to cover features on different
timescales can emerge dynamically.

C. Fluctuating Human Motion Pattern

To study how the xCTRNNs can capture temporally fluc-
tuating patterns that seem random and chaotic but have, in
fact, an underlying structure, we used the hand drawing data,
recorded by Ahmadi and Tani [20]. In this task, humans
were asked to continuously draw eight-shape figures on a
tablet by concatenating three distinct prototypical patterns
of shape drawings. This way the data includes reoccurring
long-term patterns, disturbed by individually-different short-
term fluctuations in a random sequence. Our particular aim
is to inspect how neurons activate when being set to specific
low or high timescales while solving the sequence prediction
task with latent temporal fluctuations. In order to inspect the
generalisation capabilities of the xCTRNNs, we used the 16
sequences of length 400 for training and tested on prepared in-
dependent sequences in an open loop after time step 200. The
best CTRNN was identified with (32, 16, 8, 4) module sizes
and timescales of (1, 5, 25, 125). Since the eight-shapes were
drawn in 2D, the motion patterns appear as pseudo-sinusoidal
sequences over two neurons. Overall, the CTRNN variants can
roughly capture and predict the motion patterns, but over time
clearly lose synchronicity (see Fig. 7 for a comparison). This
was observed even more clearly for the SRN and the GRU
(not shown), which tend to activate in oscillations that roughly
resemble the rhythm of the prototypical patterns with the
largest period in the test sequences. Among the xCTRNN, all
variants capture both the overall structure of reoccurring block
motion patterns and the specific pattern and their fluctuations
reasonably well, but show notable deviations, which increase
over the course of the prediction.

In analysing the sequence prediction as well as the effective
timescales during prediction, we hypothesise that both the
principle rhythm of concatenating prototypical patterns and
the short-term fluctuations are captured differently by the
xCTRNNs. We can, in fact, observe that activation pattern
are distinctly different when the timescales can dynamically
change during prediction (see Fig. 7 for a comparison). For
the ACTRNN, where the timescales are individually different
but constant during activation, many neurons activate strongly
during the prototypical patterns. Here, the activation graph
indicates that few neurons with very high timescales modulate
the faster-changing neurons, where many neurons redundantly
learn to activate for the patterns. In the GACTNN, only few
hidden neurons activate strongly, while others only contribute
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Fig. 7. Predicting a human motion sequence from the test set compared to
the simultaneous hidden layer neurons’ activation and effective timescales.

weakly (Fig. 7, second last plot). In parallel, correlating
with the prediction output, the effective timescales change
strongly, where some neurons with larger timescales change
to even higher values and thus update activation slower, while
many neurons with smaller timescales change to leak even
stronger. In effect, the gating CTRNNs seem to learn to
synchronise timescales in faster-updating and slowly-updating
neuron groups, tied to the output prediction. Overall, some
groups seem to specialise in synchronising to the overall
motion patterns and some to specific motion curves within a
pattern, where fewer neurons are needed to represent patterns.



IV. DISCUSSION

In this paper, we propose to extend1 the classic CTRNN
architecture so that timescales can adapt to a specific timescale
distribution (as in [16], [21]) and can change over the course of
the neurons’ activations by gating input from other presynaptic
neurons. This extension seems to allow the architecture to
adapt the timescale parameters towards the timescales of tem-
poral dynamics in the data. For instance, a neuron with high
timescale (thus low leakage) can get modulated by presynaptic
neurons to switch its mode between quickly forgetting and
even more strongly maintaining a certain activation.

In the exploratory analysis, we found that the adaptation of
timescale biases leads to intrinsic timescales that are more
fine-grained and suited for the data. The timescale gating
changes the behaviour of the neurons during activation in
a way that it adapts to systematically changing timescale
characteristics in the data as well as to uncertain fluctuations.

Although we just started analysing the computational prop-
erties of the GACTRNN, this network architecture seems
promising for capturing characteristics of time series with
different and spontaneously varying timescales. More work
is needed to fully investigate how the gating and adaptation
of the timescales change and specialise to the temporal char-
acteristics of the data. For this, it is necessary to study - and
perhaps first of all collect - larger data sets that show distinct
and highly complex multi-timescale dependencies. Music is a
good candidate, while behavioural data is another.

A. Neurocognitive Modelling

Behavioural data and data from neuro-imagining studies are
of particular interest as it reflects the complexities that the
human brain is tasked to deal with [10], [11]. In particular, per-
ception data from natural human-environment interactions as
well as EEG data, which could be seen as a pre-processed form
of behavioural data, is intriguing for two reasons. First, the
main purpose of the GACTRNN architectures is to study and
better understand candidates of computational mechanisms
that are key in the brain’s information processing [22]. Second,
the architectures can be employed in neurocognitive models
that aim to explain the behavioural effects of differences in
temporal information processing [23]. For example, cognitive
models can be developed to better understand how processing
on different intrinsic timescales contribute to difficulties in
processing and predicting world models and conforming be-
haviour. This is particularly interesting in-between typically
developed people and people with psychiatric symptoms,
including autism spectrum conditions or schizophrenia [12].

B. Conclusion

Overall, adaptive and gating timescales mechanisms show
potential as candidates for modelling modulation between
neurons. In intrinsically capturing the temporal characteristics
in the data, they seem effective for tasks of sequence learning
as well as tasks of cognitive modelling with perception or
action on long- and short-term dependencies.
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