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4 Abstract—Generative adversarial networks conditioned on textual image descriptions are capable of generating realistic-looking

5 images. However, current methods still struggle to generate images based on complex image captions from a heterogeneous domain.

6 Furthermore, quantitatively evaluating these text-to-image models is challenging, as most evaluation metrics only judge image quality

7 but not the conformity between the image and its caption. To address these challenges we introduce a new model that explicitly models

8 individual objects within an image and a new evaluation metric called Semantic Object Accuracy (SOA) that specifically evaluates

9 images given an image caption. The SOA uses a pre-trained object detector to evaluate if a generated image contains objects that are

10 mentioned in the image caption, e.g., whether an image generated from “a car driving down the street” contains a car. We perform a

11 user study comparing several text-to-image models and show that our SOA metric ranks the models the same way as humans,

12 whereas other metrics such as the Inception Score do not. Our evaluation also shows that models which explicitly model objects

13 outperform models which only model global image characteristics.

14 Index Terms—Text-to-image synthesis, generative adversarial network (GAN), evaluation of generative models, generative models

Ç

15 1 INTRODUCTION

16 GENERATIVE adversarial networks (GANs) [1] are capable
17 of generating realistic-looking images that adhere to
18 characteristics described in a textual manner, e.g., an image
19 caption. For this, most networks are conditioned on an
20 embedding of the textual description. Often, the textual
21 description is used on multiple levels of resolution, e.g., first
22 to obtain a course layout of the image at lower levels and
23 then to improve the details of the image on higher resolu-
24 tions. This approach has led to good results on simple, well-
25 structured data sets containing a specific class of objects
26 (e.g., faces, birds, or flowers) at the image center.
27 Once images and textual descriptions become more com-
28 plex, e.g., by containing more than one object and having a
29 large variety in backgrounds and scenery settings, the image
30 quality drops drastically. This is likely because, until
31 recently, almost all approaches only condition on an embed-
32 ding of the complete textual description, without paying
33 attention to individual objects. Recent approaches have
34 started to tackle this by either relying on specific scene lay-
35 outs [2] or by explicitly focusing on individual objects [3], [4].
36 In this work, we extend this approach by additionally focus-
37 ing specifically on salient objects within the generated image.
38 However, generating complex scenes containing multiple
39 objects from a variety of classes is still a challenging problem.
40 The most commonly used evaluation metrics for GANs,
41 the Inception Score (IS) [5] and the Fr�echet Inception

42Distance (FID) [6], are not designed to evaluate images that
43contain multiple objects and depict complex scenes. In fact,
44both of these metrics depend on an image classifier (the
45Inception-Net), which is pre-trained on ImageNet, a data
46set whose images almost always contain only a single object
47at the image center. They also do not evaluate the consis-
48tency between image description and generated image and,
49therefore, can not evaluate whether a model generates
50images that actually depict what is described in the caption.
51Even evaluation metrics specifically designed for text-to-
52image synthesis evaluation such as the R-precision [7] often
53fail to evaluate more detailed aspects of an image, such as
54the quality of individual objects.
55As such, our contributions are twofold: first, we introduce
56a novel GANarchitecture calledOP-GAN that focuses specif-
57ically on individual objects while simultaneously generating
58a background that fits with the overall image description.
59Our approach relies on an object pathway similar to [3],
60which iteratively attends to all objects that need to be gener-
61ated given the current image description. In parallel, a global
62pathway generates the background features which later on
63get mergedwith the object features. Second, we introduce an
64evaluation metric specifically for text-to-image synthesis
65tasks which we call Semantic Object Accuracy (SOA). In con-
66trast to most current evaluation metrics, our metric focuses
67on individual objects and parts of an image and also takes
68the caption into consideration when evaluating an image.
69Image descriptions often explicitly or implicitly mention
70what kind of objects are seen in an image, e.g., an image
71described by the caption “a person holding a cell phone” should
72depict both a person and a cell phone. To evaluate this, we
73sample all image captions from the COCO validation set that
74explicitly mention one of the 80 main object categories (e.e.
75“person”, “dog”, “car”, etc.) and use them to generate
76images. We then use a pre-trained object detector [8] and
77check whether it detects the explicitly mentioned objects
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78 within the generated images. We perform a user study over
79 several current text-to-image models and show that SOA is
80 highly compatible with human evaluation whereas other
81 metrics, such as the Inception Score, are not.
82 We evaluate several variations of our proposed model as
83 well as several state-of-the-art approaches that provide pre-
84 trained models. Our results show that current architectures
85 are not able to generate images that contain objects of the
86 same quality as the original images. While some models
87 already achieve results close to or better than real images on
88 scores such as the IS and R-precision, none of the models
89 comes close to generating images that achieve SOA scores
90 close to the real images. However, our results and user
91 study also show that models that attend to individual
92 objects in one way or another tend to perform better than
93 models, which only focus on global image semantics.

94 2 RELATED WORK

95 Modern architectures are able to synthesize realistic, high-
96 resolution images of many domains. In order to generate
97 images of high resolution many GAN [1] architectures use
98 multiple discriminators at various resolutions [9]. Addition-
99 ally, most GAN architectures use some form of attention for

100 improved image synthesis [7] as well as matching aware
101 discriminators [10] which identify whether images corre-
102 spond to a given textual description.
103 Originally, most GAN approaches for text-to-image syn-
104 thesis encoded the textual description into a single vector
105 which was used as a condition in a conditional GAN (cGAN)
106 [9], [10]. However, this faces limitations when the image con-
107 tent becomes more complex as e.g., in the COCO data set
108 [11]. As a result, many approaches now use attention mecha-
109 nisms to attend to specific words of the sentence [7], use
110 intermediate representations such as scene layouts [2], con-
111 dition on additional information such as object bounding
112 boxes [3] or perform interactive image refinement [12]. Other
113 approaches generate images directly from semantic layouts
114 without additional textual input [13], [14]or perform a trans-
115 lation from text to images and back [15], [16].
116 Direct Text-to-Image Synthesis. Approaches that do not
117 use intermediate representations such as scene layouts use
118 only the image caption as conditional input. [10] use a GAN
119 to generate images from captions directly and without any
120 attention mechanism. Captions are embedded and used as
121 conditioning vector and they introduce the widely adopted
122 matching aware discriminator. The matching aware dis-
123 criminator is trained to distinguish between real and match-
124 ing caption-image pairs (“real”), real but mismatching
125 caption-image pairs (“fake”), and matching captions with
126 generated images (“fake”). [17] modify the sampling proce-
127 dure during training to obtain a curriculum of mismatching
128 caption-image pairs and introduce an auxiliary classifier
129 that specifically predicts the semantic consistency of a given
130 caption-image pair. [9], [18] use multiple generators and
131 discriminators and are one of the first ones to achieve good
132 image quality at resolutions of 256� 256 on complex data
133 sets. [19] have a similar architecture as [18] with multiple
134 discriminators but only use one generator while [20] gener-
135 ate realistic high-resolution images from text with a single
136 discriminator and generator.

137[7] extend [9] and are the first ones to introduce an atten-
138tion mechanism to the text-to-image synthesis task with
139GANs. The attention mechanism attends to specific words
140in the caption and conditions different image regions on dif-
141ferent words to improve the image quality. [21] extend this
142and also consider semantics from the text description dur-
143ing the generation process. [22] introduce a dynamic mem-
144ory part that selects “bad” parts of the initial image and
145tries to refine them based on the most relevant words. [23]
146refine the attention module by having spatial and channel-
147wise word-level attention and introduce a word-level dis-
148criminator to provide fine-grained feedback based on indi-
149vidual words and image regions. [24] decompose the text-
150to-image process into three distinct phases by first learning
151a prior over the text-image space, then sampling from this
152prior, and lastly using the prior to generate the image.
153Text-to-Image Synthesis with Layouts. When using more
154complex data sets that contain multiple objects per image,
155generating an image directly becomes difficult. Therefore,
156many approaches use additional information such as bound-
157ing boxes for objects or intermediate representations such as
158scene graphs or scene layouts which can be generated auto-
159matically [25], [26], [27]. [28] and [29] build on [10] by addi-
160tionally conditioning the generator on bounding boxes or
161keypoints of relevant objects. [30] decomposition textual
162descriptions into basic visual primitives to generate images in
163a compositional manner. [2] introduce the concept of generat-
164ing a scene graph based on a caption. This scene graph is then
165used to generate an image layout and finally the image. Simi-
166lar to [2], [31] use the caption to infer a scene layout which is
167used to generate images. [32] predict convolution kernels con-
168ditioned on the semantic layout, making it possible to control
169the generation process based on semantic information at dif-
170ferent locations.
171Given a coarse image layout (bounding boxes and object
172labels) [33] generate images by disentangling each object
173into a specified part (e.g., object label) and unspecified part
174(appearance). [3] generate images conditioned on bounding
175boxes for the individual foreground objects by introducing
176an object pathway that generates individual objects. [4]
177update the grid-based attention mechanism [7] by combin-
178ing attention with scene layouts. Additionally, an object dis-
179criminator is introduced which focuses on individual
180objects and provides feedback whether the object is at the
181right location. [34] refine the grid-based attention mecha-
182nism between word phrases and specific image regions of
183various sizes based on an initial set of bounding boxes. [35]
184introduce a new feature normalization method and fine-
185grained mask maps to generate visually different images
186from a given layout. [36] generate images from scene graphs
187and allow the model to crop objects from other images to
188paste them into the generated image. [37] generate a visual-
189relation scene layout based on the caption. For this, they
190introduce a dedicated module which generates bounding
191boxes for objects at a given caption in order to condition the
192network during the image generation process.
193Semantic ImageManipulation. Finally, there are methods
194that allow humans to directly describe the image in an itera-
195tive process or that allow for direct semantic manipulation of
196images. [12] condition generation process on a dialogue
197describing the image instead of a single caption. [38] facilitate
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198 semantic image manipulation by allowing users to modify
199 image layouts which are then used to generate images. [39]
200 allow users to input object instance masks into an existing
201 image represented by a semantic layout. [40] generate images
202 iteratively from consecutive textual commands, [41] provide
203 interactive image editing based on a current image and
204 instructions on how to update the image, and [42] generate
205 individual images for a sequence of sentences. [43] do interac-
206 tive image generation but do not use text as direct input but
207 instead update a scene graph from text over the course of the
208 interaction. [44], [45], and [46]modify visual attributes of indi-
209 vidual objects in an image while leaving text irrelevant parts
210 of the image unchanged.

211 3 APPROACH

212 A traditional generative adversarial network (GAN) [1] con-
213 sists of two networks: a generator G which generates new
214 data points from randomly sampled inputs, and a discrimi-
215 nator D which tries to distinguish between generated and
216 real data samples. In conditional GANs (cGANs) [47] both
217 the discriminator and the generator are conditioned on
218 additional information, e.g., a class label or textual informa-
219 tion. This has been shown to improve performance and
220 leads to more control over the data generating process. For
221 a conventional cGAN with generator G, discriminator D,
222 condition c (e.g., a class label), data point x, and a randomly
223 sampled noise vector z the training objective V is:

min
G

max
D

V ðD;GÞ ¼ Eðx;cÞ�pdata
½log Dðx; cÞ�

þEðzÞ�pz;ðcÞ�pdata
½logð1�DðGðz; cÞ; cÞÞ�:

(1)

225225

226

227We use the AttnGAN [7] as our baseline architecture and
228add our object-centric modifications to it. The AttnGAN is a
229conditional GAN for text-to-image synthesis that uses atten-
230tion and a novel additional loss to improve the quality of
231the generated images. It consists of a generator and three
232discriminators as shown in the top row of Fig. 1. Attention
233is used such that different words of the caption have more
234or less influence on different regions of the image. This
235means that, for example, the word “sky” has more influence
236on the generation of the top half of the image than the word
237“grass” even if both words are present in the image caption.
238[7] also introduce the Deep Attentional Multimodal Simi-
239larity Model (DAMSM) which computes the similarity
240between images and captions. This DAMSM is used during
241training to provide additional, fine-grained feedback to the
242generator about how well the generated image matches its
243caption. We adapt the AttnGAN architecture with multiple
244object pathways which are learned end-to-end in both the
245discriminator and the generator, see B and C in Fig. 1.
246These object pathways are conditioned on individual
247object labels (e.g., “person”, “car”, etc.) and the same object
248pathway is applied multiple times at a given image resolu-
249tion at different locations and for different objects. This is
250similar to the approach introduced by [3]. However, [3]

Fig. 1. Overview of our model architecture called OP-GAN. The top row shows a high-level summary of our architecture, while the bottom two rows
show details of the individual generators and discriminators.
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251 only use one object pathway in the generator at a small reso-
252 lution and only one discriminator was equipped with an
253 object pathway. In our approach, the generator contains
254 three object pathways at various resolutions (16� 16, 64�
255 64, and 128� 128) to further refine object features at higher
256 resolutions and each of our three discriminators is equipped
257 with its own object pathway, see D in Fig. 1.
258 For a given image caption ’ we have several objects
259 which are associated with this caption and which we repre-
260 sent with one-hot vectors si; i ¼ 1:::n (e.g., s0 ¼ person, s1 ¼
261 car, etc.). Each object pathway at a given resolution is
262 applied iteratively for each of the objects si. The location is
263 determined by a bounding box describing the object’s loca-
264 tion and size. Each object pathway starts with an “empty”
265 zero-tensor r and the features that are generated (generator)
266 or extracted (discriminator) are added onto r at the location
267 of the specific object’s bounding box. After the object path-
268 way has processed each object, r contains features at each
269 object location and is zero everywhere else.
270 For the generator, we first concatenate the image
271 caption’s embedding ’, the one-hot label si, and a randomly
272 sampled noise vector z. We use this concatenated vector to
273 obtain the final conditioning label ii for the current object si:

ii ¼ Fð’; z; siÞ; (2)
275275

276 where F is a fully connected layer followed by a non-linear-
277 ity (A in Fig. 1).
278 The generator’s first object pathway (B.2 in Fig. 1) takes
279 this conditioning label ii and uses it to generate features for
280 the given object at a spatial resolution of 16� 16. The fea-
281 tures are then transformed onto r into the location of the
282 respective bounding box with a spatial transformer network
283 (STN) [48]. This procedure is repeated for each object si

284 associated with the given caption ’.
285 The global pathway in the first generator also gets the
286 locations and labels ii for the individual objects. It spatially
287 replicates these labels at the locations of the respective
288 bounding boxes and then applies convolutional layers to
289 the resulting layout to obtain a layout encoding (B.1 in
290 Fig. 1). This layout encoding, the image caption ’, and the
291 noise vector z are used to generate coarse features for the
292 image at a low resolution.
293 At higher levels in the generator, the object pathways are
294 conditioned on the object features of the current object and
295 the one-hot label si for that object (C.2 in Fig. 1). For this, we
296 again use an STN to extract the features at the bounding box
297 location of the object si and resize the features to a spatial res-
298 olution of 16� 16 (second object pathway) or 32� 32 (third
299 object pathway). We obtain a conditioning label in the same
300 manner as for the first object pathway (Equation (2)), replicate
301 it spatially to the same dimension as the extracted object fea-
302 tures, and concatenate it with the object features along the
303 channel axis. Following this, we applymultiple convolutional
304 layers and upsampling to update the features of the given
305 object. Finally, as in the first object pathway, we use an STN to
306 transform the features into the bounding box location and
307 add them onto r. The global pathway in the higher layers (C.1
308 in Fig. 1) stays unchanged from the baseline architecture [7].
309 Our final loss function for the generator is the same as in
310 the original AttnGAN and consists of an unconditional, a

311conditional, and a caption-image matching part. The uncon-
312ditional loss is

Luncon
G ¼ �Eðx̂Þ�pG

½log Dðx̂ÞÞ�; (3)

314314

315the conditional loss is

Lcon
G ¼ �Eðx̂Þ�pG;ðcÞ�pdata

½log Dðx̂; cÞÞ�; (4)
317317

318and the caption-image matching loss is LDAMSM
G [7] which

319measures text-image similarity at the word level and is cal-
320culated with the pre-trained models provided by [7]. The
321complete loss for the generator then is:

LG ¼ Luncon
G þ Lcon

G þ �LDAMSM
G ; (5)

323323

324where we set � ¼ 50 as in the original implementation.
325As in our baseline architecture, we employ three discrimi-
326nators at three spatial resolutions: 64� 64, 128� 128, and
327256� 256. Each discriminator possesses a global and an
328object pathway which extract features in parallel (D in
329Fig. 1). In the object pathway we use an STN to extract the
330features of object si and concatenate them with the one-hot
331vector si describing the object. The object pathway then
332applies multiple convolutional layers before adding the
333extracted features onto r at the location of the bounding box.
334The global pathway in each of the discriminators works
335on the full input image and applies convolutional layers
336with stride two to decrease the spatial resolution (D.1).
337Once the spatial resolution reaches that of the tensor r we
338concatenate the two tensors (full image features and object
339features r) along the channel axis and use convolutional
340layers with stride two to further reduce the spatial dimen-
341sion until we reach a resolution of 4� 4.
342We calculate both a conditional (image and image cap-
343tion) and an unconditional (only image) loss for each of the
344discriminators. The conditional input c during training con-
345sists of the image caption embedding ’ and the information
346about objects si (bounding boxes and object labels) associ-
347ated with the image x, i.e. c ¼ f’; sig. In the unconditional
348case the discriminators are trained to classify images as real
349or generated without any influence of the image caption by
350minimizing the following loss:

Luncon
Di

¼ �EðxÞ�pdata
½log DðxÞ� � Eðx̂Þ�pG

½logð1�Dðx̂ÞÞ�:
(6)

352352

353In order to optimize the conditional loss we concatenate the
354extracted features with the image caption embedding ’

355along the channel axis and minimize

Lcon
Di

¼ �Eðx;cÞ�pdata
½log Dðx; cÞ�

� Eðx̂Þ�pG;ðcÞ�pdata
½logð1�Dðx̂; cÞÞ�: (7)

357357

358for each discriminator. Finally, to specifically train the dis-
359criminators to check for caption-image consistency we use
360the matching aware discriminator loss [10] with mismatch-
361ing caption-image pairs and minimize

Lcls
Di

¼ �Eðx;sÞ�pdata;ð’Þ�pdata
½logð1�Dðx; cÞÞ�; (8)

363363
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364 where image x and caption ’ are sampled individually and
365 randomly from the data distribution and are, therefore,
366 unlikely to align.
367 We introduce an additional loss term similar to the
368 matching aware discriminator loss VclsðDÞ which works on
369 individual objects. Instead of using mismatching image-cap-
370 tion pairs, we use correct image-caption pairs, but with
371 incorrect bounding boxes and minimize:

Lobj
Di

¼ �Eðx;’Þ�pdata;ðsÞ�pdata
½logð1�Dðx; cÞÞ�: (9)373373

374

375 Thus, the complete objective we minimize for each indi-
376 vidual discriminator is:

LDi
¼ Luncon

Di
þ Lcon

Di
þ Lcls

Di
þ Lobj

Di
: (10)

378378

379 We leave all other training parameters as in the original
380 implementation [7] and the training procedure itself also stays
381 the same.

382 4 EVALUATION OF TEXT-TO-IMAGE MODELS

383 Quantitatively evaluating generative models is difficult [49].
384 While there are several evaluation metrics that are com-
385 monly used to evaluate GANs, many of them have known
386 weaknesses and are not designed specifically for text-to-
387 image synthesis tasks. In the following, we first discuss some
388 of the common evaluation metrics for GANs, their weak-
389 nesses, and why they might be inadequate for evaluating
390 text-to-image synthesis models. Following this, we introduce
391 our novel evaluation metric, Semantic Object Accuracy
392 (SOA), and describe how it can be used to evaluate text-to-
393 imagemodels inmore detail.

394 4.1 Current Evaluation Metrics

395 Inception Score and Fr�echet Inception Distance. Most
396 GAN approaches are trained on relatively simple images
397 which only contain one object at the center (e.g., ImageNet,
398 CelebA, etc). These methods are evaluated with metrics
399 such as the Inception Score (IS) [5] and Fr�echet Inception
400 Distance (FID) [6], which use an Inception-Net usually pre-
401 trained on ImageNet. The IS evaluates roughly how distinc-
402 tive an object in each image is (i.e. ideally the classification
403 layer of the Inception-Net has small entropy) and how
404 many different objects the GAN generates overall (i.e. high
405 entropy in the output of different images). The FID meas-
406 ures how similar generated images are to a control set of
407 images, usually the validation set by calculating the dis-
408 tance in feature space between generated and real images.
409 Consequently, the IS should be as high as possible, while
410 the FID should be as small as possible.
411 Both evaluationmetrics have knownweaknesses [50], [51].
412 For example, the IS does not measure the similarity between
413 objects of the same class, so a network that only generates
414 one “perfect” sample for each class can achieve a very good
415 IS despite showing an intra-class mode dropping behavior.
416 Li et al. [4] also note that the IS overfits within the context of
417 text-to-image synthesis and can be “gamed” by increasing
418 the batch size at the end of the training. Furthermore, the IS
419 uses the output of the classification layer of an Inception-Net
420 pre-trained on the ImageNet data set. This might not be the

421best approach for a more complex data set in which each
422image contains multiple objects at distinct locations through-
423out the image, as opposed to the ImageNet data set which
424consists of images usually depicting one object in the image
425center. Fig. 2 shows some exemplary failure cases of the IS on
426images sampled from the COCOdata set.
427The FID relies on representative ground truth data to
428compare the generated data against and also assumes that
429features are of Gaussian distribution, which is often not the
430case. For more complex data sets the FID also still suffers
431from the problem that the image statistics are obtained with
432a network pre-trained on ImageNet which might not be a
433representative data set. Finally, neither the IS nor the FID
434take the image caption into account during their evaluation.
435VS Similarity and R-Precision. [19] introduce the visual-
436semantic similarity (VS similarity) metric which measures
437the distance between a generated image and its caption.
438Two models are trained to embed images and captions
439respectively and then minimize the cosine distance between
440embeddings of matching image-caption pairs while maxi-
441mizing the cosine distance between mismatching image-
442caption pairs. A good model then achieves high VS similar-
443ity between a generated image and its associated caption.
444[7] use the R-precision metric to evaluate how well an
445image matches a given description or caption. The R-preci-
446sion score is similar to VS similarity, but instead of scoring
447the VS similarity between a given image and caption it
448instead performs a ranking of the similarity between the real
449caption and randomly sampled captions for a given gener-
450ated image. For this, first, an image is generated conditioned
451on a given caption. Then, another 99 captions are chosen ran-
452domly from the data set. Both the generated images and the
453100 captions are then encoded with the respective image and
454text encoder. Similar to VS similarity the cosine distance
455between the image embedding and each caption embedding
456is used as proxy for the similarity between the given image
457and caption. The 100 captions are then ordered in descending
458similarity and the top k (usually k=1) most similar captions
459are used to calculate the R-precision. Intuitively, R-precision
460calculates if the real caption is more similar to the generated
461image (in feature space) than 99 randomly sampled captions.
462The drawback of both metrics is that they do not evaluate
463the quality of individual objects. For example the real caption

Fig. 2. Examples when IS fails for COCO images. The top row shows
images for which the Inception-Net has very high entropy in its output
layer, possibly because the images contain more than one object and
are often not centered. The second row shows images containing differ-
ent objects and scenes which were nonetheless all assigned to the
same class by the Inception-Net, thereby negatively affecting the overall
predicted diversity in the images.
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464 could state that “a person stands on a snowy hill” while the 99
465 random captions do not mention “snow” (which usually
466 covers most of the background in the generated image) or
467 “person” (but e.g., giraffe, car, bedroom, etc). In this case, an
468 image with only white background (snow) would already
469 make the real caption rank very highly in the R-precision
470 metric and achieve a high VS similarity. See Fig. 3 for a visu-
471 alization of this. As such, this metric does not focus on the
472 quality of individual objects but rather concentrates on
473 global background and salient features.
474 Classification Accuracy Score. [52] introduce the Classi-
475 fication Accuracy Score (CAS) to evaluate conditional image
476 generation models, similar to [53]. For this, a classifier is
477 trained on images generated by the conditional generative
478 model. The classifier’s performance is then evaluated on the
479 original test set of the data set that was used to train the gen-
480 erative model. If the classifier achieves high accuracy on the
481 test set, this indicates that the data it was trained on is repre-
482 sentative of the real distribution. The authors find that nei-
483 ther the IS, the FID, nor combinations thereof are predictive
484 of the CAS, further indicating that the IS and FID are only of
485 limited use for evaluating image quality.
486 Caption Generation. [31] suggest evaluating text-to-
487 image models by comparing original captions with captions
488 obtained from generated images. The intuition is that if the
489 generated image is relevant to its caption, then it should be
490 possible to infer the original text from it. To this end, [31]
491 use a pre-trained caption generator [54] to generate captions
492 for each synthesized image and compare these to the origi-
493 nal ones through standard language similarity metrics, i.e.
494 BLEU, METEOR, and CIDEr. Except for CIDEr, these met-
495 rics were originally developed to evaluate machine transla-
496 tion and text summarization methods and were only later
497 adopted for the evaluation of image captions.
498 One challenge with this caption generation approach is
499 that often many different captions are valid for a given
500 image. Even if two captions are not similar, this does not
501 necessarily imply that they do not describe the same image
502 [55]. Furthermore, it has been shown that metrics such as
503 BLEU, METEOR, and CIDEr are primarily sensitive to n-
504 gram overlap which is neither necessary nor sufficient for
505 two sentences to convey the same meaning [55], [56], [57]
506 and do also not necessarily correlate with human judgments
507 of captions [54], [58]. Finally, there is no requirement that
508 captions, either real or generated, need to focus on specific

509objects. Instead, captions can also describe the general lay-
510out of a given scene (e.g., a busy street with lots of traffic) with-
511out explicitly mentioning specific objects. Some of these
512limitations might potentially be overcome in the future by
513novel image caption evaluation metrics that focus more on
514objects and semantic content in the scene [55], [57], [59].
515Other Approaches. In contrast to the IS, which measures
516the diversity of a whole set of images, the diversity score
517[33] measures the perceptual difference between a pair of
518images in feature space. This metric can be useful when
519images are generated from conditional inputs (e.g., labels or
520scene layouts) to examine whether a model can generate
521diverse outputs for a given condition. However, the metric
522does not convey anything directly about the quality of the
523generated images or their congruence with any conditional
524information. [14], [60], [61] run a semantic segmentation net-
525work on generated images and compare the predicted seg-
526mentation mask to the ground truth segmentation mask
527used as input for the model. However, this metric needs a
528ground truth semantic segmentation mask and does not
529provide information about specific objects within the image.

5304.2 Semantic Object Accuracy (SOA)

531So far, most evaluation metrics are designed to evaluate the
532holistic image quality but do not evaluate individual areas
533or objects within an image. Furthermore, except for Caption
534Generation and R-precision, none of the scores take the image
535caption into account when evaluating generated images. To
536address the challenges and issues mentioned above we
537introduce a novel evaluation metric based on a pre-trained
538object detection network.1 The pre-trained object detector
539evaluates images by checking if it recognizes objects that
540the image should contain based on the caption. For exam-
541ple, if the image caption is “a person is eating a pizza” we can
542infer that the image should contain both a person and a
543pizza and the object detector should be able to recognize
544both objects within the image. Since this evaluation meas-
545ures directly whether objects specifically mentioned in the
546caption are recognizable in an image we call this metric
547Semantic Object Accuracy (SOA).
548Some previous works have used similar approaches to
549evaluate the quality of the generated images. [3] evaluate
550how often expected objects (based on the caption) are
551detected by an object detector. However, only a subset of
552the captions is evaluated and the evaluated captions contain
553false positives (e.g., captions containing the phrase “hot
554dog” are evaluated based on the assumption that the image
555should contain a dog). [15] introduce a detection score that
556calculates (roughly) whether a pre-trained object detector
557detects an object in a generated image with high certainty.
558However, no information from the caption is taken into
559account, meaning any detection with high confidence is
560“good” even if the detected object does not make sense in
561the context of the caption. [62] use a pre-trained object
562detector to calculate the mean average precision and report
563precision-recall curves. However, the evaluation is done on
564synthetic data sets and without textual information as

Fig. 3. Examples when R-precision fails for COCO images. The top row
shows images from the COCO data set. The middle row shows the cor-
rect caption and the bottom row gives examples for characteristics of
captions that are rated as being more similar than the original caption.

1. Code for the evaluation metric and all experiments: https://
github.com/tohinz/semantic-object-accuracy-for-generative-text-to-
image-synthesis
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565 conditional input. [33] use classification accuracy as an eval-
566 uation metric in which they report the object classification
567 accuracy in generated images. For this, they use a ResNet-
568 101 model which is trained on real objects cropped and
569 resized from the original data. However, in order to calcu-
570 late the score, the size and location of each object in the gen-
571 erated image must be known, so this evaluation is not
572 directly applicable to approaches that do not use scene lay-
573 outs or similar representations. [37] use recall and intersec-
574 tion-over-union (IoU) to evaluate the bounding boxes in
575 their generated scene layout but do not apply these evalua-
576 tions to generated images directly.
577 SOA. Since we work with the COCO data set we filter all
578 captions in the validation set for specific keywords that are
579 related to the available labels for objects (e.g., person, car,
580 zebra, etc). For each of the 80 available labels in the COCO
581 data set we find all captions that imply the existence of the
582 respective object and generate three images for each of the
583 captions. The supplementary material, which can be found
584 on the Computer Society Digital Library at http://doi.
585 ieeecomputersociety.org/10.1109/TPAMI.2020.3021209,
586 gives a detailed overview of how exactly the captions were
587 chosen for each label. We then run the YOLOv3 network [8]
588 pre-trained on the COCO data set on each of the generated
589 images and check whether it recognizes the given object.
590 We report the recall as a class average (SOA-C), i.e. in how
591 many images per class the YOLOv3 on average detects the
592 given object, and as an image average (SOA-I), i.e. on aver-
593 age in how many images a desired object was detected. Spe-
594 cifically, the SOA-C is calculated as

SOA-C ¼ 1

jCj
X
c2C

1

jIcj
X
ic2Ic

YOLOv3ðicÞ; (11)

596596

597 for object classes c 2 C and images i 2 Ic that are supposed
598 to contain an object of class c. The SOA-I is calculated as

SOA-I ¼ 1P
c2C jIcj

X
c2C

X
ic2Ic

YOLOv3ðicÞ; (12)

600600

601 and

YOLOv3ðicÞ ¼
1 if YOLOv3 detected an object of class c

0 otherwise:

�

(13)
603603

604 Since many images can also contain objects that are not spe-
605 cifically mentioned (for example an image described by “lots
606 of cars are on the street” could still contain persons, dogs, etc.)
607 in the caption we do not calculate a false negative rate but
608 instead only focus on the recall, i.e. the true positives.
609 SOA-Intersection Over Union. Several approaches (e.g.,
610 [3], [4], [31], [33], [37]) use additional conditioning informa-
611 tion such as scene layouts or bounding boxes. For these
612 approaches, our evaluation metric can also calculate the
613 intersection over union (IoU) between the location at which
614 different objects should be and locations at which they are
615 detected, which we call SOA-IoU. To calculate the IoU we
616 use every image in which the YOLOv3 network detected
617 the respective object. Since many images contain multiple
618 instances of a given object we calculate the IoU between

619each predicted bounding box for the given object and each
620ground truth bounding box. The final IoU for a given image
621and object is then the maximum of the values, i.e. the
622reported IoU is an upper bound on the actual IoU.
623Overall this approach allows a more fine-grained evalua-
624tion of the image content since we can now focus on individ-
625ual objects and their features. To get a better idea of the
626overall performance of a model we calculate both the class
627average recall/IoU (SOA-C/SOA-IoU-C) and image average
628recall/IoU (SOA-I/SOA-IoU-I). Additionally, we report the
629SOA-C for the forty most and least common labels (SOA-C-
630Top40 and SOA-C-Bot40) to see howwell the model can gen-
631erate objects of common and less common classes.

6325 EXPERIMENTS

633We perform multiple experiments and ablation studies. In a
634first step, we add the object pathway (OP) on multiple
635layers of the generator and to each discriminator and call
636this model OPv2. We also train this model with the addi-
637tional bounding box loss we introduced in Section 3. When
638the model is trained with the additional bounding box loss
639we refer to it as BBL.
640Different approaches differ in how many objects per
641image are used during training. If an image layout is used,
642typically all objects (foreground and background) are used
643as conditioning information. Other approaches limit the
644number of objects during per training [2], [3]. To examine
645the effect of training with different numbers of objects per
646imagewe train our approachwith either amaximumof three
647objects per image (standard) or with up to ten objects per
648image, which we refer to as many objects (MO). When train-
649ing with a maximum of three objects per image we sample
650randomly from the training set at train time, i.e. each batch
651contains images which contain zero to three objects. If an
652image contains more than three objects we choose the three
653largest ones in terms of area of the bounding box. When
654training with up to ten objects per image we slightly change
655our sampling strategy so that each batch consists of images
656that contain the same amount of objects. This means that,
657e.g., each image in a batch contains exactly four objects, while
658in the next batch each image might contain exactly seven
659objects. This increases the training efficiency as most of the
660images contain fewer than five objects.
661As a result of the different settings we perform the fol-
662lowing experiments:

6631) OPv2: apply the object pathway (OP) on multiple
664layers of the generator and on all discriminators,
665training without the bounding box loss and with a
666maximum of three objects per image.
6672) OPv2 + BBL: same as OPv2 but with the bounding
668box loss added to the discriminator loss term.
6693) OPv2 + MO: same as OPv2 but with a maximum of
670ten objects per image.
6714) OPv2 + BBL + MO (OP-GAN): combination of all
672three approaches.
673We train each model three times on the 2014 split of the
674COCO data set. At test time we use bounding boxes gener-
675ated by a network [4] as the conditioning information. There-
676fore, except for the image caption no other ground truth
677information is used at test time.
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678 6 EVALUATION AND ANALYSIS

679 Tables 1 and 2 give an overview of our results for the COCO
680 data set. The first half of the table shows the results on the
681 original images from the data set and from related literature
682 while the second half shows our results. To make a direct
683 comparison we calculated the IS, FID, CIDEr, and R-preci-
684 sion scores ourselves for all models which are provided by
685 the authors. As such, the values from AttnGAN [7], Attn-
686 GAN+OP [3], Obj-GAN [4], and DM-GAN [22] are the ones
687 most directly comparable to our reported values since they
688 were calculated in the same way.
689 Note that there is some inconsistency in how the FID is
690 calculated in prior works. Some approaches, e.g., [4], com-
691 pare the statistics of the generated images only with the sta-
692 tistics of the respective “original” images (i.e. images
693 corresponding to the captions that were used to generate a
694 given image). We, on the other hand, generate 30,000
695 images from 30,000 randomly sampled captions and com-
696 pare their statistics with the statistics of the full validation
697 set. Many of the recent publications also do not report the
698 FID or R-precision. This makes a direct comparison difficult
699 as we show that the IS is likely the least meaningful score of
700 the three since it easily overfits [4] and due to the reasons
701 mentioned in Section 4. We calculate each of the reported
702 values of our models three times for each trained model
703 (nine times in total) and report the average and standard
704 deviation. To calculate the SOA scores we generate three

705images for each caption in the given class, except for the
706“person” class, for which we randomly sample 30,000 cap-
707tions (from over 60,000) and generate one image for each of
708the 30,000 captions.

7096.1 Quantitative Results

710Overall Results. As Table 1 shows, all our models outper-
711form the baseline AttnGAN in all metrics. The IS is
712improved by 16-19 percent, the R-precision by 6-7 percent,
713the SOA-C by 28-33 percent, the SOA-I by 22-25 percent, the
714FID by 20-25 percent, and CIDEr by 15-18 percent. This was
715achieved by adding our object pathways to the baseline
716model without any further tuning of the architecture, hyper-
717parameters, or the training procedure. Our approach also
718outperforms all other approaches based on FID, SOA-C,
719and SOA-I. While there are two approaches that report a IS
720higher than our models, it has previously been observed
721that this score is likely the least meaningful for this task and
722can be gamed to achieve higher numbers [4], [51]. Our user
723study also shows that the IS is the score that has the least
724predictive value for human evaluation.
725We also calculated each score using the original images of
726the COCO data set. For the IS we sampled three times 30,000
727images from the validation set and resized them to 256� 256
728pixels. These images were also used to calculate the CIDEr
729score. To calculate the FIDwe randomly sampled three times
73030,000 images from the training set and compared them to

TABLE 1
Inception Score (IS), Fr�echet Inception Distance (FID), R-Precision, Caption Generation With CIDEr,

and Semantic Object Accuracy on Class (SOA-C) and Image Average (SOA-I) on the MS-COCO Data Set

Model IS " FID # R-precision (k=1) " CIDEr " SOA-C " SOA-I "
Original Images 34:88� 0:01 6:09� 0:05 68:58� 0:08 0:795� 0:003 74.97 80.84

AttnGAN [7]y 23:61� 0:21 33:10� 0:11 83.80 0:695� 0:005 25.88 39.01
[34] 23:74� 0:36 86:44� 3:38
ControlGAN [23] 24:06� 0:60 82.43
AttnGAN + OP [3]y 24:76� 0:43 33:35� 1:15 82.44 0:689� 0:008 25.46 40.48
MirrorGAN [16] 26:47� 0:41 74.52
Obj-GAN [4]y 24:09� 0:28 36:52� 0:13 87:84� 0:08 0:783� 0:002 27.14 41.24
HfGAN [20] 27:53� 0:25
DM-GAN [22]y 32:32� 0:23 27:34� 0:11 91:87� 0:2891:87� 0:28 0:823� 0:0020:823� 0:002 33.44 48:03
SD-GAN [21] 35:69� 0:5035:69� 0:50
OP-GAN (Best Model) 27:88� 0:12 24:70� 0:0924:70� 0:09 89:01� 0:26 0:819� 0:004 35:8535:85 50:4750:47

OPv2, 0 obj 26:80� 1:01 30:01� 1:81 83:87� 1:22 0:760� 0:004 26:04� 1:47 37:56� 1:27
OPv2, 1 obj 27:68� 0:47 26:18� 0:27 87:37� 0:60 0:798� 0:013
OPv2, 3 obj 27:78� 0:50 26:45� 0:40 87:74� 1:08 0:805� 0:011
OPv2, 10 obj 27:66� 0:34 26:52� 0:44 87:73� 0:98 0:806� 0:006 33:82� 0:69 48:39� 1:01
OPv2 + BBL, 0 obj 24:60� 1:25 33:03� 0:76 81:27� 1:45 0:735� 0:029 24:00� 2:13 34:01� 2:89
OPv2 + BBL, 1 obj 26:34� 0:55 26:59� 1:04 86:42� 0:60 0:783� 0:006
OPv2 + BBL, 3 obj 26:52� 0:47 26:74� 1:08 87:08� 0:60 0:793� 0:013
OPv2 + BBL, 10 obj 26:48� 0:58 26:83� 1:10 86:80� 0:56 0:794� 0:015 33:19� 0:40 48:24� 0:68
OPv2 +MO, 0 obj 24:32� 1:65 35:36� 1:95 79:75� 1:87 0:695� 0:015 21:15� 1:47 30:24� 2:36
OPv2 +MO, 1 obj 27:36� 0:49 25:06� 1:11 88:33� 0:81 0:789� 0:008
OPv2 +MO, 3 obj 27:65� 0:37 24:96� 1:12 89:13� 0:42 0:807� 0:014
OPv2 +MO, 10 obj 27:59� 0:43 24:94� 1:0924:94� 1:09 89:14� 0:4189:14� 0:41 0:805� 0:013 33:46� 1:01 47:93� 1:56
OPv2 + BBL +MO, 0 obj 21:84� 0:83 45:79� 1:16 72:71� 1:75 0:626� 0:025 16:55� 1:81 22:76� 2:17
OPv2 + BBL +MO, 1 obj 27:61� 0:67 26:19� 0:82 87:85� 0:25 0:791� 0:009
OPv2 + BBL +MO, 3 obj 28:04� 0:6528:04� 0:65 25:91� 1:03 88:90� 0:24 0:810� 0:009
OPv2 + BBL +MO, 10 obj 27:90� 0:79 25:80� 1:01 89:00� 0:17 0:814� 0:0070:814� 0:007 34:51� 1:1234:51� 1:12 48:90� 0:7248:90� 0:72

Results of our models are obtained with generated bounding boxes. Scores for models marked with y were calculated with a pre-trained model provided by the
respective authors.
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731 the statistics of the validation set. The R-precision was calcu-
732 lated on three times 30,000 randomly sampled images and
733 the corresponding caption from the validation set and the
734 SOA-C and SOA-I were calculated on the real images corre-
735 sponding to the originally chosen captions.
736 As we can see, the IS is close to the current state of the art
737 models with a value of 34.88. It is possible to achieve a
738 much higher IS on other, simpler data sets, e.g., IS > 100 on
739 the ImageNet data set [63]. This indicates that the IS is
740 indeed not a good evaluation metric, especially for complex
741 images consisting of multiple objects and various locations.
742 The difference between the R-precision on real and gener-
743 ated images is even larger. On the original images, the R-
744 precision score is only 68.58, which is much worse than
745 what current models can achieve (> 88).
746 One reason for this might be that the R-precision calcu-
747 lates the cosine similarity between an image embedding and
748 a caption embedding and measures how often the caption
749 that was used to generate an image is more similar than 99
750 other, randomly sampled captions. However, the same
751 encoders that are used to calculate the R-precision are also
752 used during training to minimize the cosine similarity
753 between an image and the caption it was generated from. As
754 a result, the model might already overfit to this metric
755 through the training procedure. Our observation is that the
756 models tend to heavily focus on the background to make it
757 match a specific word in the caption (e.g., images tend to be
758 very white when the caption mentions “snow” or “ski”, very
759 blue when the caption mentions “surf” or “beach”, very
760 green when the caption mentions “grass” or “savanna”, etc.)
761 This matching might lead to a high R-precision score since it
762 leads, on average, to a large cosine similarity. Real images do
763 not always reflect this, since a large part of the image might
764 be occupied by a person or an animal, essentially “blocking
765 out” the background information. We see a similar trend for
766 the CIDEr evaluation where many models achieve a score
767 similar to the score reached by real images. Regardless of
768 what the actual reason is, the question remains whether eval-
769 uation metrics like the IS, R-precision, and CIDEr are mean-
770 ing- and helpful when models that can not (as of now)
771 generate images that would be confused as “real” achieve
772 scores comparable to or better than real images.
773 The FID and the SOA values are the only two evaluation
774 metrics (that we used) for which none of the current state of
775 the art models can come close to the values obtained with
776 the original images. The FID is still much smaller on the real

777data (6.09) compared to what current models can achieve
778(> 24 for the best models). While the FID still uses a net-
779work pre-trained on ImageNet it compares activations of
780convolutional layers for different images and is, therefore,
781likely still more meaningful and less dependent on specific
782object settings than the IS. Similarly, the SOA-C (SOA-I) on
783real data is 74.97 (80.84), while current models achieve val-
784ues of around 30� 36 (40� 50). Since the network used to
785calculate the SOA values is not part of the training loop the
786models can not easily overfit to this evaluation metric like
787they can for the R-precision. Furthermore, the results of the
788SOA evaluation confirm the impression that none of the
789models is able to generate images with multiple distinct
790objects of a quality similar to real images.
791Impact of theObject Pathway. To get a clearer understand-
792ing of how the evaluation metrics might be impacted by the
793object pathway we calculate our scores for a different number
794of generated objects. More specifically, we only apply the
795object pathway for a maximum given number of objects (0, 1,
7963, or 10) per image. Intuitively, we would assume that without
797the application of the object pathway the IS and FID should be
798decreased, since the object pathway is not used to generate any
799object features and the images should, therefore, consist
800mostly of background. Additionally, we can get an intuition of
801how important the object pathway is for the overall perfor-
802mance of the network by looking at how it affects the R-preci-
803sion, SOA-C, and SOA-I.
804As Table 1 shows, all models perform markedly worse
805when the object pathway is not used (0 obj). We find that
806the models trained with up to ten objects per image seem to
807rely more heavily on the object pathway than models
808trained with three objects per image. For models trained
809with only three objects per image (OPv2 and OPv2 + BBL)
810the IS decreases by around 1� 2, the R-precision decreases
811by around 4� 5, the SOA-C (SOA-I) decreases by around
8127� 9 (11� 14), CIDEr decreases by around 6-8 percent, and
813the FID increases by around 4� 7. On the other hand, mod-
814els trained with up to 10 objects suffer much more when the
815object pathway is removed, with the IS decreasing by
816around 3� 6, the R-precision decreasing by around 9� 15,
817the SOA-C (SOA-I) decreasing by around 12� 18 (17� 28),
818CIDEr decreasing by around 16-30 percent, and the FID
819increasing by around 10� 20. These results indicate that the
820object pathways are an important part of the model and are
821responsible for at least some of the improvements compared
822to the baseline architecture.

TABLE 2
Comparison of the Recall Values for the Different Models

Model SOA-C / IoU SOA-I / IoU SOA-C-Top40 / IoU SOA-C-Bot40 / IoU

Original Images 74.97 / 0.550 80.84 / 0.570 78.77 / 0.546 71.18 / 0.554
AttnGAN [7] 25.88 / �� 39.01 / �� 37.47 / �� 14.29 / ��
AttnGAN + OP [3] 25.46 / 0.236 40.48 / 0.311 39.77 / 0.308 11.15 / 0.164
Obj-GAN [4] 27.14 / 0.513 41.24 / 0.598 39.88 / 0.587 14.40 / 0.438
DM-GAN [22] 33.44 / �� 48.03 / �� 47.73 / �� 19.15 / ��
OPv2 33.82 (26.04) / 0.207 48.39 (37.56) / 0.270 48.34 (36.53) / 0.260 19.31 (15.55) / 0.152
OPv2 + BBL 33.19 (24.00) / 0.210 48.24 (34.01) / 0.270 47.96 (32.96) / 0.261 18.43 (15.04) / 0.159
OPv2 +MO 33.46 (21.15) / 0.214 47.93 (30.24) / 0.275 47.84 (28.15) / 0.264 19.07 (14.15) / 0.163
OPv2 + BBL +MO 34.51 (16.55) / 0.217 48.90 (22.76) / 0.278 49.70 (22.19) / 0.269 19.32 (10.91) / 0.165

We used generated bounding boxes to calculate the values. Numbers in brackets show scores when the object pathway was not used at test time.
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823 Impact of Bounding Box Loss. Adding the bounding box
824 loss to the object pathways has a small negative effect on all
825 scores, but does slightly improve the IoU scores (see
826 Table 2). Note that the weighting of the bounding box loss
827 in the overall loss term was not optimized but simply
828 weighted with the same strength as the matching aware dis-
829 criminator loss Lcls

D . It is possible that the positive effect of
830 the bounding box loss could be increased by weighting it
831 differently.
832 Impact of Training onManyObjects. Training themodel
833 with up to ten objects per image has onlyminor effects on the
834 IS and SOA scores, but improves the FID and R-precision.
835 However, we observe that themodels trainedwith only three
836 objects per image slightly decrease in their performance once
837 the object pathway is applied multiple times. Usually, the
838 models trained on only three objects achieve their best per-
839 formance when applying the object pathway three times as
840 at training time. Once the model is trained on up to ten
841 objects though, we do not observe this behavior anymore
842 and instead achieve comparable or even better results when
843 applying the object pathway ten times per image.
844 SOA Scores. Table 2 shows the results for the SOA and
845 SOA-IoU. The SOA-I values are consistently higher than the
846 SOA-C values. Since the SOA-I is calculated on image aver-
847 age (instead of class average like the SOA-C) it is skewed by
848 objects that often occur in captions and images (e.g., per-
849 sons, cats, dogs, etc.). The SOA values for the most and least
850 common 40 objects show that the models perform much bet-
851 ter on the more common objects. Actually, most models per-
852 form about two times better on the common objects
853 showing their problem in generating objects that are not
854 often observed during training. For a detailed overview of
855 how each model performed on the individual labels please
856 refer to the supplementary material, available online.
857 When we look at the IoU scores we see that the Obj-GAN
858 [4] achieves by far the best IoU scores (around 0.5), albeit at
859 the cost of lower SOA scores. Our models usually achieve
860 an IoU of around 0:2� 0:3 on average. Training with up to
861 ten objects per image and using the bounding box loss
862 slightly increases the IoU. However, similar to previous
863 work [3], [4] we find that the AttnGAN architecture tends to
864 place salient object features at many locations of the image
865 which affects the IoU scores negatively.
866 When looking at the SOA for individual objects (see
867 Fig. 5) we find that there are objects for which we can
868 achieve very high SOA values (e.g., person, cat, dog, zebra,
869 pizza, etc.). Interestingly, we find that all tested methods
870 perform “good” or “bad” at the same objects. For example,
871 all models perform reasonably well on objects such as person
872 and pizza (many examples in the training set) as well as e.g.,
873 plane and traffic light (few examples in the training set). Con-
874 versely, all models fail on objects such as table and skateboard
875 (many examples in the training set) as well as e.g., hair drier
876 and toaster (few examples in the training set).
877 We found that objects need to have three characteristics to
878 achieve a high SOA and the highest SOA scores are achieved
879 when objects possess all three characteristics. The first
880 important characteristic is easily predictable: the higher the
881 occurrence of an object in the training data, the better (on
882 average) the final performance on this object. Second, large
883 objects, i.e. objects that usually cover a large part of the image

884(e.g., bus or elephant), are usually modeled better than objects
885that are usually small (spoon or baseball glove). The final and
886more subtle characteristic is the surface texture of an object.
887Objects with highly distinct surface textures (e.g., zebra,
888giraffe, pizza, etc.) achieve high SOA scores because the
889object detection network relies on these textures to detect
890objects. However, while the models are able to correctly
891match the surface texture (e.g., black and white stripes for a
892zebra) they are still not capable of generating a realistic-look-
893ing shape of many objects. As a result, many of these objects
894possess the “correct” surface texture but their shape is more
895a general “blob” consisting of the texture and not a distinct
896form (e.g., a snout and for legs for a zebra). See Fig. 6 for a
897visualization of this.
898This is one of the weaknesses of the SOA score as it might
899give the wrong impression that an 80 percent object detec-
900tion rate means in 80 percent of the cases the object is recog-
901nizable and of real-world quality. This is not the case, as the
902SOA scores are calculated with a pre-trained object detector
903which might focus more on texture and less on shapes of
904objects [64]. Consequently, the results of the SOA are more
905aptly interpreted as cases where a model was able to gener-
906ate features that an independently pre-trained object detec-
907tor would classify as a given object. The overall quality of
908the metric is, therefore, strongly dependent on the object
909detector and future improvements in this area might also
910lead to more meaningful interpretations of the SOA scores.
911Fig. 4 shows images generated by our different models.
912All images shown in this paper were generated without
913ground truth bounding boxes but instead use generated
914bounding boxes [4]. The first column shows the respective
915image from the data set, while the next four columns show
916the generated images. We can see that all models are capa-
917ble of generating recognizable foreground objects. It is often
918difficult to find qualitative differences in the images gener-
919ated by the different models. However, we find that the
920models using the bounding box loss usually improve the
921generation of rare objects. Training with ten objects per
922image usually leads to a slightly better image quality over-
923all, especially for images that contain many objects.
924As we saw in the quantitative evaluation, the object path-
925way can have a large impact on the image quality. Fig. 7
926shows what happens when (some of) the object pathways
927are not used in the full model (OPv2 + BBL + MO). Again,
928the first column shows the original image from the data set
929and the second column shows images generated without
930the use any of the object pathways. The next three columns
931show generated images when we consecutively use the
932object pathways, starting with the lowest object pathway
933and iteratively adding the next object pathway until we
934reach the full model. When no object pathway is used (first
935column) we clearly see that only background information is
936generated. Once the first object pathway is added we also
937get foreground objects and their quality gets slightly better
938by adding the higher-level object pathways.
939User Study. In order to further validate our results, we
940performed a user study on Amazon Mechanical Turk. Simi-
941lar to other approaches [9], [21], [31] we sampled 5,000 ran-
942dom captions from the COCO validation set. For each
943caption, we generated one image with each of the following
944models: our OP-GAN, the AttnGAN [7], the AttnGAN-OP
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945 [3], the Obj-GAN [4], and the DM-GAN [22]. We showed
946 each user a given caption and the respective five images
947 (without time limit) from the models in random order and
948 asked them to choose the image that depicts the given

949caption best. We evaluated each image caption twice, for a
950total of 10,000 evaluations with the help of 200 participants.
951Table 3 shows how often each model was chosen as hav-
952ing produced the best image given a caption (variance was
953estimated by bootstrap [65]). This evaluation reveals that

Fig. 4. Comparison of images generated by different variations of our models.

Fig. 5. Comparison of SOA scores: SOA per class with degree of a bin reflecting relative frequency of that class.

Fig. 6. Generated images and objects recognized by the pre-trained
object detector (YOLOv3) which was used to calculate the SOA scores.
The results highlight that, like most other CNN based object detectors,
YOLOv3 focuses much more on texture and less on actual shapes.

TABLE 3
Human Evaluation Results (Ratio of 1st by Human Ranking) of

Five Models on the MS-COCO Data Set Given a Caption

AttnGAN-OP [3] 14:65%� 0:35
AttnGAN [7] 16:80%� 0:43
Obj-GAN [4] 20:96%� 0:33
DM-GAN [22] 22:42%� 0:41
OP-GAN (ours) 25:17%� 0:4325:17%� 0:43
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954 the human ranking closely reflects the ranking obtained
955 through the SOA and FID scores. One notable exception are
956 the two worst performing models (AttnGAN and Attn-
957 GAN-OP), which we measure to perform similar according
958 to the SOA and FID scores, but obtain different results in
959 the user study. We find that the IS score is not predictive of
960 the performance in the user study. The R-precision and
961 CIDEr are somewhat predictive, but predict a different
962 ranking of the top-three performing models. Overall, we
963 find that our OP-GAN performs best according to both the
964 SOA scores and the human evaluation. As hypothesized in
965 Section 4 we also observe that the FID and SOA scores are
966 the best predictors for a model’s performance in a human
967 user evaluation.

9686.2 Qualitative Results

969Fig. 8 shows examples of images generated by our model
970(OPv2 + BBL + MO) and those generated by several other
971models [3], [4], [7], [22]. We observe that our model often
972generates images with foreground objects that are more rec-
973ognizable than the ones generated by other models. For
974more common objects (e.g., person, bus or plane) all models
975manage to generate features that resemble the object but in
976most cases do not generate a coherent representation from
977these features and instead distribute them throughout the
978image. As a result, we notice features that are associated
979with an object but not necessarily form one distinct and
980coherent appearance of that object. Our model, on the other
981hand, is often able to generate one (or multiple) coherent

Fig. 7. Comparison of images generated by our model (OP-GAN) with OPs switched on and off.

Fig. 8. Comparison of images generated by our model (OP-GAN) with images generated by other current models.
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982 object(s) from the features, see e.g., the generated images
983 containing a bus, cattle, or the plane.
984 When generating rare objects (e.g., cake or hot dog) we
985 observe that our model generates a much more distinct
986 object than the other models. Indeed, most models fail
987 completely to generate rare objects and instead only generate
988 colors associatedwith these objects. Finally, whenwe inspect
989 more complex scenes we see that ourmodel is also capable of
990 generating multiple diverse objects within an image. As
991 opposed to the other images for “room showing a sink and some
992 drawers” we can recognize a sink-like shape and drawers in
993 the image generated by our model. Similarly, our model can
994 also generate an image containing a reasonable shape of a
995 banana and a cup of coffee, whereas the other models only
996 seem to generate the texture of a banana without the shape
997 and completely ignore the cup of coffee.

998 7 CONCLUSION

999 In this paper, we introduced a novel GAN architecture (OP-
1000 GAN) that specifically models individual objects based on
1001 some textual image description. This is achieved by adding
1002 object pathways to both the generator and discriminator
1003 which learn features for individual objects at different resolu-
1004 tions and scales. Our experiments show that this consistently
1005 improves the baseline architecture based on quantitative and
1006 qualitative evaluations.
1007 We also introduce a novel evaluationmetric named Seman-
1008 tic Object Accuracy (SOA) which evaluates how well a model
1009 can generate individual objects in images. This new SOA eval-
1010 uation allows to evaluate text-to-image synthesis models in
1011 more detail and to detect failure and success modes for indi-
1012 vidual objects and object classes. A user studywith 200 partic-
1013 ipants shows that the SOA score is consistent with the
1014 ranking obtained by human evaluation, whereas other scores
1015 such as the Inceptions Score are not. Evaluation of several
1016 state-of-the-art approaches using SOA shows that no current
1017 approach is able to generate realistic foreground objects for
1018 the 80 classes in the COCO data set. While some models
1019 achieve high accuracy for several of themost common objects,
1020 all of them fail when it comes to modeling rare objects or
1021 objects that do not have an easily recognizable surface struc-
1022 ture. However, using the SOA as an evaluationmetric on text-
1023 to-image models provides more detailed information about
1024 how well they perform for different object classes or image
1025 captions and iswell alignedwith human evaluation.
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