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Abstract—Furigana are pronunciation notes used in Japanese writing.
Being able to detect these can help improve optical character recog-
nition (OCR) performance or make more accurate digital copies of
Japanese written media by correctly displaying furigana. This project
focuses on detecting furigana in Japanese books and comics. While
there has been research into the detection of Japanese text in general,
there are currently no proposed methods for detecting furigana.

We construct a new dataset containing Japanese written media and
annotations of furigana. We propose an evaluation metric for such data
which is similar to the evaluation protocols used in object detection
except that it allows groups of objects to be labeled by one annotation.
We propose a method for detection of furigana that is based on math-
ematical morphology and connected component analysis. We evaluate
the detections of the dataset and compare different methods for text
extraction. We also evaluate different types of images such as books and
comics individually and discuss the challenges of each type of image.

The proposed method reaches an F1-score of 76% on the dataset.
The method performs well on regular books, but less so on comics, and
books of irregular format. Finally, we show that the proposed method
can improve the performance of OCR by 5% on the manga109 dataset.

Source code is available via https://github.com/nikolajkb/
FuriganaDetection 1

1 INTRODUCTION

FURIGANA is a part of Japanese written language.
Japanese uses both a phonetic (representing sounds,

called hiragana) alphabet and a logographic (representing
meaning, called kanji) alphabet. In written Japanese, the two
are mixed to form sentences. For kanji, since the characters
represent meaning, the reader may not always know how
they are pronounced. Names is an example where the read-
ing of kanji is particularly difficult, given that names written
with the same characters can often be pronounced many
different ways as described by Ogihara in [1]. Therefore,
writers may sometimes add notes next to kanji to indicate
their pronunciation, these types of notes are called furigana.
Furigana is typically written in the hiragana alphabet. Fig. 1
shows furigana on a book page, Fig. 2 shows furigana on a
comic book page.

Furigana can be problematic for systems that process text
within images. Furigana does not change the meaning of the
text and can thus be disregarded by computers for most
purposes. For example, current OCR systems do not handle
furigana well. The furigana is often mistaken as regular text

1. This project was originally submitted by NKB in fulfillment of the
30 ECTS MSc thesis at the IT University of Copenhagen.

Fig. 1: Furigana marked by red boxes on an excerpt from
a book. Source: “Eiyū-Ō, Bu o Kiwameru Tame Tensei-Su:
Soshite, Sekai Saikyō no Minarai Kishi” by Hayaken [2].

and inserted into the output or characters are misclassified
because of the furigana next to them. An example of this is
described in Fig. 2.

Detecting the locations of furigana could also be used to
make more accurate digital copies of scanned texts. Most
data formats for displaying text such as pdf, epub, and html
has support for displaying furigana. By detecting what text
is furigana, furigana could be displayed correctly in these
formats.

The proposed system aims to detect the location of furig-
ana, so that other systems may use this information to better
process Japanese text within images. Furigana rarely appears
“in the wild”, such as on signs or advertisements. This is
not to say that such cases do not exist, but they are rare,
and there is currently no dataset containing such images.
Additionally, furigana is generally not used in handwritten
text. This project therefore focuses on two categories: books
and comics.
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Fig. 2: Furigana marked by red boxes on a comic book page.
Using Tesseract OCR on the top left speech bubble gives the
following text:
こんとと公才はお誠本の本和導がバッサリだと/.
Removing the furigana from the image and running OCR
again gives the following text:
今度はお旗本の剣術指南役がパッサリだと/.
The version without furigana is a near-perfect transcription
of the image (edit distance 2), while the version with furigana
shares little similarity at all with the original text (edit
distance 20). Source: “Akera Kanjinch” by Yuki Kobayashi
[3].

2 RELATED WORK

There are currently no works directly treating the detection
of furigana. However, several papers that investigate related
problems: text analysis in images (OCR, scene text detection,
and the use of mathematical morphology for detecting
text in images), and then methods specifically designed for
Japanese text (handwritten text and text in Japanese comics).

2.1 Text analysis in images

2.1.1 Optical character recognition

The problem of locating furigana is related to the more
general problem of text localization. Text localization is a
fundamental step in most systems that processes text in
images. This includes OCR systems such as Tesseract [4],
which uses connected component analysis to locate lines
of text before splitting said lines into individual characters.
In newer versions of Tesseract, a long short-term memory
(LSTM) network based approach has also been introduced.
OCRopus [5] starts by analyzing the physical layout of the
page such as columns, text blobs, and lines to find the
location of text. PaddlePaddleOCR(PP-OCR) [6] is another
OCR system that is of particular interest for this project since
it has placed a lot of focus on the processing of Chinese text,
which is more comparable to Japanese than English. PP-
OCR uses differentiable binarization as described by Liao
et. al. [7] for text localization. This method involves using a

probabilistic segmentation map of the text in the image to
estimate the bounding boxes for the text.

2.1.2 Scene text
Recently a more difficult challenge known as scene text
detection has been widely studied. Historically, OCR sys-
tems mainly dealt with recognizing text in machine-written
documents. Scene text deals with text that is captured ”in
the wild”, that is, not in written media, but rather on images
of street signs, billboards, storefronts, and more. Scene text is
more difficult to process due to complex backgrounds, noise,
warped perspective, and other challenges that do not appear
in machine-written documents. Solutions to the scene text
detection need to handle a problem that also shows up when
processing text in comic books: how to find text in an image
with many visual distractions?

Many datasets containing scene text have been created,
such as COCO-Text [8] which is based on the MSCOCO
[9] object detection dataset created by Microsoft, to which
researchers from Cornell Tech have extracted images con-
taining text and added annotations for the text. ICDAR [10],
[11], [12] is created for the International Conference on Doc-
ument Analysis and Recognition and has multiple versions
containing scene text of different types. Total Text [13] by
Ch’ng et. al. puts special focus on curved text. French Street
Name Signs (FSNS) [14] contains more than one million
images of French road signs from Google Street View. There
is even a dataset containing Japanese text, downtown Osaka
scene text [15] which was captured on a 360 degree camera
and thus has many angles for each text instance.

The Robust Reading Competition is held every year
and focuses on “written communication in unconstrained
setting”, which often includes scene text detection [16].
Current top text detection methods include:

• TextFuseNet [17], which uses Concurrent Neural
Network (CNN) based networks in a multi-path
fusion architecture to exploit character, word, and
global level features

• Corner-based Region Proposal Network [18], which
uses detection of word-corners to predict bounding
boxes

• EAST [19], a popular text detection system that uses
a fully convolutional network to detect text locations.

2.1.3 Morphology for text detection
Several papers use morphology and connected component
analysis for locating text. Qi et al. [20] present 12 features for
text that can be found using connected component analysis
and use Adaboost [21] to find scene text using these features.
Wu et al. [22] use a similar approach of feature extraction
and classification to detect text in scene text images. Dos
Santos et al. [23] use morphology to extract features from
pages containing handwritten text which are used to predict
the locations of text lines.

2.2 Japanese text
2.2.1 Handwritten Japanese
Many of the papers that treat Japanese text detection only
consider handwritten text. Zhu et. al. [24] describe a proba-
bilistic model for recognizing text from the HANDS-kondate
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dataset of handwritten Japanese text [25]. Ly et. al. [26]
present an end-to-end deep convolutional recurrent net-
work trained on a dataset of synthetic handwritten text.
Clanuwat et. el. [27] focus on recognizing ancient Japanese
text using deep learning. Finally, Ly et. al. [28] focus
on historical handwritten text, creating an attention-based
row-column encoder-decoder model for recognizing such
text. Despite dealing with handwritten text as opposed to
machine-written text, these papers do highlight some of the
general issues related to processing Japanese text in images,
such as text being written in multiple orientations and the
difficulty of segmenting Japanese characters.

2.2.2 Text detection in Japanese comics
There has also been research into processing text specifically
in Japanese comics (also known as manga). A key dataset
for much of the ongoing research is Manga109 [29], [30].
This dataset contains 109 different manga and around 20,000
pages in total. The dataset provides annotations which
includes the locations of frames, characters, and text along
with transcriptions of the text. Mantra Inc. has created a tool
for automatic translation of manga, their paper discusses
many of the key aspects in the processing of manga [31].
Although they mainly discuss methods for translation, the
problem of localizing text is also mentioned. Their method
involves an object detector for speech bubbles and one for
text lines. Methods specifically for text localization in manga
have also been proposed, such as [32], [33], [34], [35] and
especially good results from [36]. We discuss these in more
detail in Section 5.1.

3 PROBLEM ANALYSIS

This section analyses the problem of detecting furigana by
detailing how furigana is used in Japanese and how it
appears in written media. This information gives a general
idea of what defines furigana as well as some pitfalls one
may encounter when trying to locate it.

3.1 Characteristics of furigana
To understand how to solve the problem of locating furigana,
we can begin by analyzing some characteristics of how
furigana appears within Japanese text. The text shown in Fig.
1 and 2 is read from right to left and from top to bottom, that
is to say, the lines of text are written vertically. This is the
case for the majority of written media in Japan. However,
Japanese text can be written both vertically and horizontally.
For example, most digital text, such as on websites and in
video games is written horizontally. In addition, short texts
are often written horizontally, such as text on billboards or
restaurant menus.

When the text is written vertically, the furigana will
appear on the right side of the kanji that it is annotating. If
the text is written horizontally, the furigana is usually written
on top of the kanji or in a few cases on the bottom. If a
word is made up of more than one kanji, the furigana may
appear in one continuous string or with a space separating
the furigana based on which kanji it is annotating. Furigana
is always written in a smaller font than the main text.

Furigana is almost always written in the hiragana al-
phabet, but this is not always the case. Sometimes, the

Fig. 3: Challenging texts. Top: here, different font sizes and
orientations are mixed on a single page. Src: [37]. Bottom
left: English and Japanese text mixed together in a textbook.
Src: [38] Bottom right: text with special formatting. Src: [39]

author may write furigana in the katakana alphabet, which
is a second phonetic alphabet used in Japanese, mainly
for foreign words. In some cases, an author might even
write ”furigana” using kanji. For example, an author might
writeガール, a transliteration of the English word ’girl’ and
annotate it with 女子, the Japanese word for girl. This type
of usage does not fit most definitions of furigana, but in this
project we shall consider it part of the text that should be
detected since it is still just a type of reading aid.

3.2 Challenges of Japanese written media

Any solution to the problem of detecting the location of
furigana must consider challenges imposed by the nature
of the data in question. Failing to take these challenges into
account will mean that the system does not generalize to a
diverse set of data. We provide a list of challenges, which
is result of discoveries made throughout this project as well
as NKB’s experience reading Japanese books and comics,
below. Some examples are shown in Fig. 3.

Images may contain more than just text. For regular
books, pages almost exclusively consist of text, but that is
not to say that other elements do not occur. Books may
include images, graphs, or shapes used for formatting such
as boxes, lines, circles, or arrows. As for comics, these
contain a large number of visual elements, making it vital
that a solution can deal with this complexity.

Images may be of different resolutions. The physical
size of books differs, but even for books of the same size, the
resolution of the scanned pages varies greatly. This means
that relying on pixel-based sizes may not generalize well.
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Differences in font sizes. Different books use different
font sizes. Even a single page may contain multiple font
sizes. One cannot assume that a single page only has one
font size. In books, headers are often larger than other text,
and in comics, the font size might vary from one speech
bubble to another.

Furigana is small. Furigana is usually written in very
small font sizes. Depending on the quality of the scan, it
might be difficult even for a human to tell what characters
are written.

Images may be rotated. Sometimes an image will not
have the correct orientation after being scanned.

Images may contain slanted, warped and curved text.
Although most text in written media is written in straight
lines, slanted, warped or curved text might appear. Par-
ticularly, in Japanese comics it is common for the author
to occasionally include handwritten text, this text is often
not written in a straight line. It should be noted that it is
uncommon for such text to include furigana.

Text might not be black. Although rare, text might be
written in a font that is not black, such as white text on a
black background.

Different text orientations on a single page. Japanese
can be written horizontally and vertically. Additionally,
there might be both horizontal and vertical text on the same
page.

Pages may contain text that is not Japanese. Particu-
larly, small bits of English text can sometimes be found in
Japanese books. In language textbooks for Japanese learners,
much of the text is often not Japanese.

4 DATASET

The dataset was created to represent a diverse selection
of books and comics. It includes all the cases described
in Section 3.2, except for rotated pages. In this project,
the dataset is only used for evaluating the performance of
the system. During development, a separate development
dataset was used, while the test dataset used to get the
experimental results in Section 7 was only used after the
system was implemented.

4.1 Data and sources

The data is split into two main categories: books and comics.
The books used are mainly books targeted at younger
audiences, particularly “light novels” which is a genre of
Japanese literature mainly targeted at young adults. The
reason for this is that books written for adults often con-
tain little to no furigana. The comics were chosen with no
particular emphasis on any one type as most comics use
furigana.

The included pages are the first pages from each of the
works, that is, the first pages of the main content (leaving
out the title page, table of contents, etc). Aside from this
selection of the starting point, the pages are selected as an
uninterrupted sequence, even if that means including pages
with no furigana, full-page illustrations, etc.

The full list of works used can be seen in Appendix A.

4.2 Annotation

The annotations are made using axis-aligned bounding
boxes. This is a natural fit for the data since it is taken from
scanned pages of printed media, and thus contains little to
no warped text.

The dataset is annotated on character level. Most western
text detection datasets are annotated on a word-level basis
such as [8], [10], [13], while Yuan et al. annotate their Chi-
nese scene text dataset on a character level [40]. Furigana is
not regular text, so defining annotations based on words or
other grammatical structures is not appropriate. Therefore,
the least biased and most flexible style of annotation is to
annotate on the character level. This also means that the
definition of how the annotations should be done is unam-
biguous, and should thus provide consistent annotations.

The annotations are created by NKB. Due to the simple
definition of the annotations, the annotation work could be
done by others without knowledge of Japanese text. As a
sanity check, NKB asked four people with no knowledge of
Japanese and who are not involved in this project, to create
annotations for a single page. They all completed this task
with no errors in the annotation.

5 METHOD

The proposed method for detecting furigana includes the
following steps, also visualized in Fig. 4:

1) Extracting text from the image, based on one of the
text detection models from Manga Image Translator

2) Locating text regions, based on morphological op-
erations to merge close-by characters together, and
inferring text direction

3) Separating text lines via morphological operations
4) Estimating font size of each text line to identify

which text is furigana
5) Splitting furigana detections into smaller areas
6) Optional: verifying furigana detections using OCR

The method is composed of these parts because no
method exists for furigana detection. In our preliminary
experiments, scene text detection did not work for detecting
text in Japanese media due to a lack of Japanese models, the
current top performer in scene text tasks TextFuseNet [17]
did not work on data from this project. Using OCR did not
work well either, we describe this in more detail in Section
7.4. On the other hand, the methods for extracting text from
manga worked quite well. We saw good initial results using
morphology2 and connected component analysis to detect
furigana in books. The text extraction methods allowed this
approach to also work for comics. We describe more specific
implementation details below.

2. Mathematical morphology involves defining a kernel (or
structuring element) consisting of geometrical shape of pixels,
e.g. a 2x2 square. This kernel ”slides” over a binary image, and
depending on how the kernel intersects with pixels in the image,
new pixels are created or existing ones are removed. For a good
introduction, see https://towardsdatascience.com/understanding-
morphological-image-processing-and-its-operations-7bcf1ed11756

https://towardsdatascience.com/understanding-morphological-image-processing-and-its-operations-7bcf1ed11756
https://towardsdatascience.com/understanding-morphological-image-processing-and-its-operations-7bcf1ed11756
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Fig. 4: Visualization of the detection process. Image source: “Tsundere Akuyaku Reijō Rı̄zerotte to Jikkyō no Endō-kun to
Kaisetsu no Kobayashi-san” by Suzu Enoshima [41].

5.1 Extracting text from the image
For books, pages consist of mainly text, and the text can
be extracted by simply thresholding the image. However,
this is not the case for media like comics that contain visual
elements in addition to text. To find furigana we first need
to extract the text while not getting any of the background
noise. In this project, we use one of the text detection
models from Manga Image Translator by zyddnys and other
contributors 3. The section below describes the reasoning for
this choice.

5.1.1 Choice of text extractor
Text detection is a well-researched problem, Ye et al. [42]
gives an overview of the topic, detailing the individual
sub-problems of a text detection system and describing
the different methods used to solve these problems, finally
giving an overview of some of the proposed systems found
in the literature.

There are several large datasets such as [8], [13] and
[10] that contain images with annotated text and many

3. https://github.com/zyddnys/manga-image-translator

text detection models have been proposed based on these
datasets. There are a few problems with applying these
models directly to the proposed system. Most importantly,
these datasets do not contain Japanese text. Also, these
datasets contain scene text, that is, text captured ”in the
wild” and not from written media like books and comics,
this means that the regularity that these provide is not
exploited. For these reasons, a more specific approach is
needed.

A system capable of detecting text in comics should also
be able to solve the relatively easier problem of detecting
text in books. Arimaki et al. [32] propose a method for
detecting text in manga (Japanese comic books) that con-
siders geometrical features of connected components within
the image to generate text region proposals. These regions
are then classified using a deep learning model based on
the ImageNet [43] classifier by Krizhevsky et al. [44] in
order to filter away false positives. Their method generates
square text regions. Chu et al. [33] propose a similar method
of region proposal and classification. Their method uses
a modified Faster R-CNN [45] to generate region propos-

https://github.com/zyddnys/manga-image-translator
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als and classify said regions. Tolle et al. [34] propose a
method whereby speech balloons in manga are detected
using connected component analysis. This means that this
method cannot detect text that is not inside a speech balloon.
Piriyothinkul et al. [35] propose a method where letter
candidates are generated using Stroke Width Transform.
These candidates are then classified using an SVM trained
on the HOG features of the letter proposals. The system
developed by Mantra [31] also does text detection in manga
but the paper does not go into much detail on how the text
extraction is performed.

The results for these methods are of mixed quality,
with [35] being the top performer with an F1-score of 0.5,
although a direct comparison is not possible since different
datasets are used for evaluation across these papers. None
of the authors provide their source code, so I was unable to
test the performance of these papers on the data used in this
project.

Del Gobbo [36], [46] proposes a method, Manga Text
Segmentation (MTS), which uses a deep network model
with a U-net [47] architecture to perform end-to-end text
detection. Besides good performance, the system outputs a
pixel-level mask of the text. This is advantageous, especially
in situations where text is placed on top of a background
since this background noise will be filtered away. I tested the
system developed by Del Gobbo on data from this project.
Del Gobbo’s system generally performed quite well on
many pages. However, a common issue was an abundance
of noise/false positives in the output. That is, there are a lot
of shapes in the output that is not text. These performance
issues might partially stem from the fact that relatively little
training data was used, 450 images in tota, compared to, for
example, over 60000 images in the COCO-Text dataset [8].

Besides methods proposed in the literature, there also
exist a few other projects that aim to solve this problem.
Two are of particular interest. First is Comic Text Detector
(CTD) by dmMaze4. This project, like MTS [36], uses an
end-to-end deep learning approach. This project however
is trained on 13 thousand images of which 1/3 are from
the manga109 dataset [30] also used by MTS, 1/3 are
from western comics and 1/3 are synthetic data. The other
project is Manga Image Translator (MIT). This project
provides both its own text detection and one based on
CTD. Their original text detector does not work for this
project, as the mask is too fuzzy and dilated for the furigana
to be separated from the main text. The implementation
based on CTD on the other hand performs very well, even
outperforming the original CTD due to having less noise
in the mask. The reason for this difference is unclear since
they supposedly use the same model and post-processing.
In conclusion, the best text extractor currently available
according to the requirements of this project is MIT (using
their implementation based on CTD), and thus this is used
for text detection in the proposed method. It should be
noted however that each system has their pros and cons.
Particularly, there is a trade off between the amount of false
positives and false negatives, some systems mark too many
shapes as text, and some mark too little. MIT erroneously
filters away some of the furigana, whereas CTD and MTS

4. https://github.com/dmMaze/comic-text-detector

generally preserve more of it. But the higher amount of
noise in the latter two means that MIT outperforms them.
The performance of the different methods are compared in
Section 7.1.

5.2 Finding text areas and inferring text direction
A single page may contain multiple text areas with different
orientations and of differing font sizes. In a comic, a text
area might equate to one speech bubble and on a book page,
there might be a text area for the main text and one for the
header.

First, we run a morphological closing operation to join
characters that are close to each other. These initial areas
are then split into horizontal and vertical groups based on
the orientation of the text. This is done by considering the
height/width ratio of the text area. If the area is taller than
it is wide it is considered vertical, if not it is considered
horizontal. This simple yet effective approach has some
limitations, which we discuss in Section 7.5.

Next, areas that are close to each other are merged. This
is done for horizontal and vertical groups individually to
avoid merging horizontal and vertical text into one area.
Doing this improves the performance of the system slightly,
as can be seen in Section 7.5.

The result is a list of rectangles that define text areas
as well as information about whether a given text area is
horizontal or vertical.

5.3 Separating text lines
In this step, the characters in each line of text are merged to
make the entire line appear as a long rectangle. To achieve
this, a very long and thin kernel, e.g. a 1/40 ratio, is used
while doing a closing operation. The kernel is horizontal for
horizontal text and vertical for vertical text. The result is
that the text is merged in the direction of the text but not to
the sides where the furigana is located. An example of this
can be seen in Fig. 5. The bounding boxes of the connected
components are returned as input to the next step.

Before the operation described above is performed, ero-
sion is performed with a small kernel. This is to avoid
having the furigana touch the main text and accidentally
being detected as part of the main text. This is an important
step, as not being able to separate furigana from the main
text is a big source of errors. The difference in performance
can be seen in Section 7.5.

5.4 Estimating font size and inferring which text is furi-
gana
We now have a list of rectangles that may be either furigana
or regular text. We can differentiate furigana because it is
smaller then the regular text. However, in order to general-
ize this for a diverse set of images, we need an approach that
does not assume any absolute sizes. The way this is done is
to estimate the font size of the main text.

The process is shown in Algorithm 1. We assume that
the main text has the largest total area of all the shapes. We
first get the thickness of all rectangles: the width, if the text
is vertical and the height, if the text is horizontal. Then, we

https://github.com/dmMaze/comic-text-detector
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Fig. 5: Morphology applied to horizontal and vertical text.
Closing operation with a long thin kernel. The lines of text
are clearly visible. The small blobs next to two of the lines
are furigana.

Algorithm 1 Algorithm for finding font size

Input: a list of rectangles R, a bin size b
x← min(thickness of rectangle in R)
y ← max(thickness of rectangle in R)
if x = y then

return x
end if
font size← 0
max area← 0
for i = x to y do

area ← sum(area of rectangles in R with thickness
between i and i+b)

if area ≥ max area then
max area← area
font size← mean(thickness of rectangles in bin)

end if
end for
return font size

find the minimum and maximum thickness. We then divide
this interval into bins and distribute the rectangles into them
according to their thickness. The bin with the largest total
area is assumed to be the bin containing the main text. We
then calculate the average thickness of the rectangles within
this bin, this is the font size.

Once we have the font size, inferring which text is furig-
ana is quite simple, we define furigana as all text rectangles
that are less than half the size of the main text, plus a small
buffer and a minimum value to avoid marking noise, and
return the rectangles that fit this requirement.

5.5 Splitting detections into smaller areas
Before returning the final detections, they are split into
smaller clusters of characters to avoid marking empty space.
Failing to do this often results in evaluation case 9 from
Fig.6, meaning that the detection is marked as a false pos-

itive. Section 7.5 shows the decrease in performance when
not splitting the clusters. The splitting is done by running
a morphological closing operation on the text within the
detection to merge characters that are close to each other
but not separated clusters of characters.

5.6 (Optional) Verifying furigana detections using OCR
We can use OCR to verify the detected furigana locations. A
weakness of the method described above is that it does not
have any concept of language, it is based purely on visual
processing. This means that the system does not make any
guarantees that the areas selected even contain text. Noise,
figures, parts of illustrations, etc. can be selected as furigana
if it has the right shape and location.

Tesseract is used for OCR operations. While Tesseract
has its flaws when it comes to Japanese text, it was by far
the best OCR solution out of the ones tested. Paddlepaddle
failed to detect any text at all in most cases and OCRopus
did not have a compatible Japanese model.

At the end of the previous step, a list of rectangles
possibly containing furigana is provided. These are used to
crop the original image to get a new image containing only
the area of interest. Before passing this image to the OCR
engine, two prepossessing steps are applied. The image is
resized to double size and a white margin is added to the
image. This helps improve the performance of Tesseract 5.

The following configurations are applied to Tesseract.
Tesseract has two models for Japanese text, one for hori-
zontal text and one for vertical, the correct one is selected
based on the orientation of the text. Tesseract allows the user
to specify the Page Segmentation Mode (PSM). PSM allows
one to specify what kind of text the input image contains.
If the text is horizontal, the PSM is set to “Single Line”, for
vertical text it is set to “Single Block Vertical Text” and for
square text, assumed to be one character, it is set to “Single
Character”. Finally, using the tessedit char whitelist vari-
able, the set of accepted characters is limited to hiragana and
katakana characters. If no restriction on the set of valid char-
acters is done, there will very often be some character that
happens to have high confidence. Also, invalid characters
would not be disregarded. There is only one case where
this approach fails and that is in detecting furigana that is
written in kanji. However this is very rare, and as described
in Section 3.1 it is debatable whether this kind of notation
can even be considered furigana.

In order to determine if the image provided is valid,
the confidences of the words returned by Tesseract are
inspected. If the mean confidence is above a threshold, the
image is considered valid. Additionally, if the confidence
of any word is above another, higher, threshold, the image
is also accepted. If an image contains no characters, or
characters not of a correct type, the confidences will be low
or there will simply be no detected words. The use of the
term “word” is somewhat misleading, I found that in most
cases the “words” returned by Tesseract corresponded to
single characters or groups of two or three characters. This
behaviour is understandable given that there is no logical
way to split furigana into words.

5. These pre-processing steps are taken from Tesseract’s documenta-
tion https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html

https://tesseract-ocr.github.io/tessdoc/ImproveQuality.html
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Fig. 6: Different cases for evaluation. The red boxes should
be seen as the predictions made by the system and the black
boxes are the ground truth. 1: FP, detection not on ground
truth. 2: TP, detection fits ground truth. 3: FP, detection
does not sufficiently cover ground truth. 4: TPx2, detections
overlap, but sufficiently cover ground truth. 5: TP+FN,
detection overlaps one ground truth annotation but does
not sufficiently overlap the second one. 6: TPx2, detection
overlaps two ground truth annotations. 7: FP, detection area
too large. 8: FN, no detection. 9: FP, detection area too large.

Fig. 7: Example of intersection and union in n-IOU

For filtering away invalid detections, this approach
works very well as can be seen in Section 7.1 from the
increase in precision. The main issue with it is that some-
times, word confidences are very low even for valid text.
This means that when using this verification step, a lot of
correct detections will be filtered away.

6 EVALUATION METRIC

For evaluating the performance of the system, we use an
approach similar to that used in most object detection
challenges. Each bounding box detected by the system is
compared to the bounding boxes of the annotation, if the
detection is similar enough to one of the annotations, the
detection is evaluated as a true positive (TP). Otherwise, it
is evaluated as a false positive (FP). These counts of TP and
FP can then be used to calculate a recall, precision, and F1-
score. This approach to evaluation is illustrated in Fig. 6.

This protocol is very similar to the Intersection Over
Union (IOU) metric used in most object detection evaluation

algorithms such as [48], as well as the evaluation used by
Microsoft COCO [9]. In the IOU metric, whether a detection
sufficiently overlaps a ground truth label is decided by
looking at the IOU between the detection and the label. The
protocol described in Fig. 6 differentiates itself only in case
number 6. Here the detection covers two ground truths.
In usual object detection systems, this is an error since
the two ground truths should be detected as two distinct
objects. However, in the case of detecting furigana, there is
only one class of object. Additionally, there is no need to
separate distinct objects. Since the goal is simply to detect
all furigana, it should not matter how/if the characters are
grouped together as long as there is not excessive space
between grouped characters.

To facilitate this difference, we introduce the concept of
IOU between multiple objects, henceforth referenced to as
n-IOU. Usually, IOU is only defined between two objects, a
good description of this can be found in [49], however this
does not fit the method of evaluation defined above. In Fig.
7 the n-IOU between the red box and the two black boxes
is illustrated. The intersection is the area where the red box
intersects with either of the black boxes, the union is the
union of all three boxes. The concept can be extrapolated
to any amount of black boxes. Mathematically, n-IOU is
defined as

R ∩ (B1 ∪B2 ∪ · · · ∪Bn)

R ∪B1 ∪B2 ∪ · · · ∪Bn
(1)

This definition can be extrapolated to work with any
amount of R sets as well, but this is not used in this project.

In case 6 in Fig 6, the IOU is not large enough between
either of the two black boxes and the red box for them to
count as a true positive, however the n-IOU between the two
black boxes and the red box is large enough. This is scored
as two true positives, one for each ground truth. Using n-
IOU has the benefit of abstracting away the exact format of
the annotations and predictions, meaning that the clustering
of characters or lack thereof does not impact the evaluation.

6.1 Implementation of the evaluation function
The evaluation protocol is implemented as follows. For each
prediction, the system will check for overlapping labels.
If there is one or more overlapping labels, the IOU or n-
IOU between the predictions and the label(s) is calculated.
If this is above the threshold defined when running the
evaluation, the number of true positives is increased by the
amount of matching labels. The standard threshold of 0.5
commonly used in object detection is also the default here.
This is done for all combinations of the overlapping labels.
The combination with the most labels (the best fit), that is
within the IOU threshold, is selected. The matching labels
are added to a list of used labels and cannot be used again
for other predictions. From these counts of true and false
positives, the recall, precision, and f1-score are calculated.
If true positives + false positives equals 0, precision is
undefined and the image is skipped. If true positives +
false negatives equals 0, recall is undefined and the image is
skipped.

7 EXPERIMENTS

We evaluated the proposed method in several ways:
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TABLE 1: Main results. R: Recall(%). P: Precision(%). F1: F1-score(%). Scores marked in bold are the top scores for R/P/F1
within each category. MIT: Manga Image Translator6. CTD: Comic Text Detector7. MTS: Manga Text Segmentation [46].

Method All Books Books (no
textbooks)

Books (only
textbooks)

Comics

R P F1 R P F1 R P F1 R P F1 R P F1
Final method (MIT) 75 83 76 88 84 85 91 92 91 80 60 67 59 82 67
With OCR validation
(MIT) 66 91 73 83 92 86 85 95 89 77 84 79 45 90 57

Alternative text
detection: thresholding 47 47 46 82 79 79 91 94 92 56 38 44 0 0 0

Alternative text
detection: CTD 73 78 73 89 82 83 91 92 91 80 54 62 55 72 61

Alternative text
detection: MTS 74 77 73 88 81 82 87 84 84 91 74 78 57 71 61

• Performance of the method according to the main
evaluation protocol (Section 7.1)

• Quantitative and qualitative evaluation of the
method’s errors (Section 7.2)

• Assessing the improvement in OCR performance
using the proposed method (Section 7.3 )

• Additional experiments with alternative configura-
tions of the method (Sections 7.4 and 7.5)

7.1 Main experiment: performance of system accord-
ing to evaluation protocol

We present the main results in Table 1. Next to splitting the
results into columns corresponding to books and comics, we
also show two sub-categories of books: regular books and
textbooks used to teach Japanese. We can see that both the
recall and especially the precision is quite low for textbooks.
Whereas Japanese books generally follow a predictable lay-
out, these textbooks often have a complex layout and often
include English. Please note that the number of textbook
pages is smaller than the other categories.

The rows show different versions of the method. The
first row shows the proposed method which is using MIT
as text detection. On the whole dataset, an F1-score of 76 is
achieved. MIT is especially good for comics where it beats
the other text detection methods. This leads to it beating the
other methods in overall F1-score, but it see, it does not hold
top scores in all areas.

The second row shows the results with the optional step
of validating detections using OCR enabled. As expected,
this increases precision at the cost of recall. The type of data
that sees the biggest improvement when using validation is
textbooks. This is due to the high level of noise and false
detections for this data type. This improvement in score for
textbooks means that the F1 score across all books is higher
when using validation, although the score for only regular
books is slightly lower.

The third row shows results for the ’thresholding’ text
detection method. This is simply thresholding the entire
image without using any model for extracting text. For
regular books, we can see that this method works quite
well, reaching an F1-score of 92. Another advantage of the
thresholding approach is that it is much faster than the other
text detection methods. With the thresholding method, the

6. https://github.com/zyddnys/manga-image-translator
7. https://github.com/dmMaze/comic-text-detector

TABLE 2: Error types

Error nr. Error description Pages Total
1 Errors in text mask 33 260

2 Disconnected bits of a character
detected as furigana 17 26

3
Furigana is so close to main text
that it is not correctly separated
from it

12 173

4
Special characters (exclamation
mark, underline etc.) is detected as
furigana

8 44

5 Wrong text orientation detected 6 112

6 Text with non-standard formatting
(slanted, hand-written etc.) 6 49

7 Furigana is too small 3 3
8 English text 2 2
9 Incorrect text area estimation 1 16

entire dataset is processed in about 10 seconds on the com-
puter used for testing whereas MIT and CTD take about 150
seconds to process the dataset. However, the thresholding
method struggles with textbooks, and is completely useless
for comics, getting an F1-score of 0.

The fourth row shows the results from CTD text detec-
tion. CTD’s main strength is regular books. But for comics,
CTD does not perform as well as MIT due to having more
noise in the mask.

The fifth row shows the results from MTS. Overall,
MTS also sees weaker results compared to MIT. However,
MTS greatly outperforms the other text detection methods
in textbooks. There are two main reasons for this. One,
MTS generally includes more text in its mask. Whereas the
other text detection methods often fail to include some text,
especially furigana, this is not as common for MTS. Two, MIT
and CTD include some noise present in the scanned pages.
MTS does not include this noise.

7.2 Error types

Table 2 shows the categories of errors within the detections
of the test data. The errors are enumerated both by the
number of pages that a given error type appears on and
by how many errors in total are caused by this error type.
For example, error type 2 appears on 17 pages but only
causes 26 errors in total, while error type 5 causes over 112
errors on only 6 pages. E.g. when the wrong text orientation
is detected, all the furigana within that block of text is not
detected and creates many false negatives. Figure 8 shows
examples of these errors.

https://github.com/zyddnys/manga-image-translator
https://github.com/dmMaze/comic-text-detector
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Fig. 8: Examples of error types. The red boxes show furigana detections, except for (9) where it shows the detected text area.
The images with black background show the text mask.

(1) Error in text mask, there
are two lines of text but
among the characters is a
lot of noise, most notice-
ably the white blob starting
from the middle of the two
lines and extending to the
right line. Src: [50]

(2) Disconnected bits of a
characters detected as furi-
gana. Src: [51]

(3) Furigana close to main
text, which results in the fu-
rigana not being separated
from the main text and
thus not being detected.
Src: [37]

(4) Special characters de-
tected as furigana. Src: [51]

(5) Wrong orientation detected. The original text is
shown on the left and the text mask with morphology
applied to it on the right. The text on the top is
correctly detected as being vertical, but the text on the
bottom is detected as being horizontal which results in
the text lines being ”stretched” in the wrong direction.
Src: [52]

(6) text with non-standard formatting. On the right is
the original image. On the left is the image with mor-
phology applied, here we can see what goes wrong.
Some of the lines are merged together into one large
blob, smaller blobs next to this will be detected as
furigana. Src: [39]

(7) Furigana too small. The
first two furigana are cor-
rectly detected, but the
last one is so thin that it
disappears when process-
ing the image. Src: [53]

(8) English text causing
problems. The dot above
the i in ”items” is de-
tected as furigana. Src: [38]

(9) Wrong text area estimation. Here we see three
text areas, however since they are very close the
system detects them as one area. The red box shows
the detected area. Src: [37]
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TABLE 3: Performance of OCR with and without furigana
removal. Performance is given in CER (lower is better).

Data/method text
blocks

CER
with
furigana

CER
furigana
removed

improve-
ment

first 15 books of
manga109 20893 0.496 0.472 +5%

first 15 books of
manga109, books
with frequent
furigana usage

15345 0.510 0.476 +7%

first 15 books of
manga109, books
with infrequent
furigana usage

5548 0.459 0.461 -0.3%

Akkera Kanjinchou,
furigana removed
with proposed
method

1340 0.532 0.473 +11%

Akkera Kanjinchou,
furigana removed
manually

1340 0.532 0.450 +15%

7.3 Improvement in the performance of OCR

One of the goals of detecting furigana was to improve the
performance of OCR of Japanese text. To test this with the
proposed method, we used the manga109 dataset, which
includes both locations and annotations for text blocks.

The experiment was performed as follows. For each
page, the furigana is detected and removed by replacing the
furigana area with white pixels. Then, for each text block,
OCR (Tesseract) is performed on the text block in the orig-
inal image and the version with the furigana removed. For
each of these, the Levenshtein edit-distance [54], and based
on this the Character Error Rate (distance/n), is calculated.
We can then compare the two to see if there has been an
improvement in the CER.

We show the results in Table 3. Removing furigana using
the proposed method improves the performance of OCR
slightly. The amount of improvement varies based on the
book. The largest improvement was observed in Belmondo
with an improvement of 12% and the smallest improvement
was seen in Burari Tessen Torimonocho, where the CER
decreased by 1.6%.

One thing to note about these results is that not all the
manga in manga109 include furigana. In cases where furigana
is not used, trying to remove furigana can only negatively
affect the performance, since everything that is removed is a
false positive. The second and third row show this difference
in performance.

It is also of interest to compare removing furigana using
the proposed method to removing furigana manually as a
”gold standard” furigana removal. To test this, we manually
removed the furigana from the Akkera Kanjinchou manga.
Removing furigana using the proposed method sees an
improvement of 11%, while removing furigana manually
improves the performance by 15%. In other words, the
proposed method reaches 72% of the maximum possible
improvement in performance that can be achieved by re-
moving furigana.

Fig. 9: Text lines in a book as detected by tesseract. Src: [55]

7.4 Alternative configurations - detecting furigana us-
ing OCR
An interesting alternative to the proposed method would
be to use OCR to detect what text is furigana. The first step
of most OCR algorithms is to detect the location of text. In
theory, we could cut out many of the error-prone steps in the
proposed method by using these detections as the starting
point for the detection of furigana. If we had the bounding
boxes for the main text and the furigana, it would be simple
to compare the sizes and determine which is furigana.

In practice, this approach has some major problems. The
assumption that we can get accurate text locations with
main text and furigana does not hold. To test this approach,
we used Tesseract to get text locations. Tesseract often fails
to detect main text and furigana as separate lines, which
creates inaccurate text lines as well as making it impossible
to use this information to separate furigana and main text.

These issues with text lines can be seen in Figure 9.
The furigana is correctly separated from the main text in
the first line, but not so in any of the following lines. This
was the case for all the images tested. The same issues are
present at the word level bounding boxes, where words
often contain both furigana and main text (Tesseract is not
made to give accurate character level annotations, so these
are not accurate regardless).

This result also gives some insight into why furigana
worsens the output of OCR systems. The furigana makes
the system detect text lines incorrectly, which in the worst
case means that the main text will not be detected correctly
since the furigana next to the characters might cause misclas-
sifications.

7.5 Other alternative configurations
Table 4 shows the results of changing various details of the
method. The first row is the main result from Section 7.1,
while rows 2 to 4 show the results of switching off parts of
the method described in Sections 5.2, and 5.5.

The last row presents another additional experiment
with using OCR to detect the direction of the text. Infer-
ring the direction of the text is a non-trivial problem. The



12

TABLE 4: Experiments using different configurations of the
method.

Experiment Recall(%) Precision(%) F1(%)
Baseline 75 83 76
Not merging text
areas 74 87 77

Not using erosion
during morphology
step

63 86 68

No splitting of
furigana areas 46 80 54

Using OCR to detect
text orientation 75 82 76

approach in Section 5.2 fails if, for example, we have a
long row of short vertical lines in an area. Then the area
is longer than it is tall, but the lines are still vertical. A
better approach is to look at the height/width ratio of the
individual lines. This can be done by using an OCR engine
(here Tesseract) to find the lines of text within the text area.
The number of vertical and horizontal lines is counted, if
there are more vertical lines, the area is considered vertical
and vice versa. However, this method is much more com-
putationally expensive. And as we can see, it ends up with
worse performance than the simpler baseline method.

8 DISCUSSION

8.1 Discussion of results
In Section 7.1, we saw that the system performs better on
books than on comics. The dataset is a mix of newer and
older comics, and most of the errors seem to be related
to older comics. In older comics, the furigana is written
very close to the main text. Due to this and the often poor
resolution of older comics and it becomes hard to separate
the main text from the furigana. This is the main reason for
the low recall seen on comics as it means that much of the
furigana is not detected. For newer comics, the scores are
more comparable to books.

Section 7.3 showed that it is possible to improve the
performance of OCR by removing furigana. One thing that
stands out is that the error rate is quite high, even with
the furigana removed manually. This indicates that furigana
is not the main problem with Tesseract’s OCR. Other OCR
services show better results than this. For example, using
Google’s OCR solution seems to make much fewer errors
when transcribing Japanese text, despite the fact that it is
based on Tesseract. This shows that there should be ample
room for improvement in the general performance of the
OCR. If the error rate was lower overall, it is possible
that the relative improvement seen from removing furigana
would be higher than the improvements seen in Section
7.3. A big contributor to the high error rate is that when
the detected text for a single text area is longer than the
expected text, the error rate for this text area will be very
high. As an example, in one text area the expected text
is ”!!?”, but Tesseract outputs ” ”,
in this case, the character error rate is 5. These kinds of
detections considerably increase the error rate.

Section 7.5 showed the results of the OCR-based method
of inferring text orientation. The method generally works
well, but text lines are not always detected correctly. Adding

some heuristics for when the OCR-based method should
be used, we were able to achieve a performance that was
slightly better than the main results. However, given that
this method significantly slows down the system, the lack
of strong improvement, and the general inconsistency of the
method, we decided to not use this method of inferring text
orientation.

8.2 Future work
The performance of the method depends in large part on the
performance of the auxiliary problem of extracting Japanese
text from book and comic pages into a text mask. The best
text detection system for the proposed method is Manga
Image Translator. This problem could use more attention, as
the current methods are still far from perfect.

One issue with the proposed method is that it does not
start by considering the text itself, a human reads a text
one character at a time and can use its position, size and
meaning relative to other characters to determine its role in
the text, while the proposed method sees only connected
components of pixels. A method that is integrated into an
OCR system would be able to use this textual information,
but would require an OCR engine capable of fine-grained
processing on the character level.

Another possibility would be to modify the text line
detection of an OCR engine such that it would recognize
furigana as distinct lines. This would make it possible to
implement a simple furigana detection mechanism based on
the location and size of the detected lines.

9 CONCLUSION

Detection of furigana in Japanese written media is a problem
that has not seen much research. This project formally
defines the problem, discusses the related challenges and
proposes a method for detecting the locations of furigana in
Japanese books and comics based on morphology and con-
nected component analysis. For evaluating this method, we
created a new dataset of images with annotations of furigana,
and proposed an adjusted detection metric. Additionally,
we show that using this method can improve the perfor-
mance of OCR in texts where furigana is used frequently.
The method performs well on pages of regular layout but
struggles with unusual or complex text layout. While comics
and textbooks might require more fundamental changes
to the method, it’s likely that with some fine-tuning this
method can achieve near-perfect results on regular Japanese
books.
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APPENDIX A
DATASET

Table 5 lists the books and comics included in the test dataset. We do not have the rights to share all the publishers images,
however, the images and annotations (including the development set with 57 images) can be provided on request by
contacting nikolajnkb@gmail.com.

TABLE 5: Dataset

Title Romanized title Author Publisher Nr. of pages Pages used

Books

ようこそ実力至上主義の教
室

Yōkoso Jitsuryoku Shijō
Shugi no Kyōshitsu e

Shōgo
Kinugasa

Media Factory 5 book 3,
page 10-14

境界線上のホライゾン Kyōkaisen-jō no Horaizon Minoru
Kawakami

ASCII Media
Works

5 book 1,
page 22-26

新機動戦記ガンダムW
Frozen Teardrop

Shin Kidō Senki Gandamu
Wingu Furozen Tiadoroppu

Katsuyuki
Sumisawa

Kadokawa
Shoten

5 book 1,
page 8-12

魔法科高校の劣等生 Mahōka Kōkō no Rettōsei Tsutomu Satō Shōsetsuka ni
Narō

5 book 1,
page 12-16

ニートだけどハロワにいっ
たら異世界につれてかれた

Nı̄todakedo Harowa ni
Ittara Isekai ni Tsuretekareta

Katsura
Kasuga

Media Factory 5 book 1,
page 10-14

ガーリー・エアフォース Gārı̄ Ea Fōsu Kōji Natsumi ASCII Media
Works

5 book 1,
page 12-17

上級へのとびら Jōkyu e no Tobira Mayumi Oka
et al.

Kurosio
Publishers

5 page
166-170

Japanese for everyone Japanese for Everyone Susumu
Nagara

Gakken 5 page 86-90

Comics

ボン・クラージュ！乙女 Bon Kurāju! Otome Akisato
Wakuni

Shogakukan 5 book 1,
page 7-11

ダービークイーン Dābı̄kuı̄n Ashihara
Hinako

Shogakukan 5 book 1,
page 5-10

カミヨメ Kami Yome Tomiyaki
Kagisora

Square Enix 5 book 1,
page 5-9

ミステリと言う勿れ Misuteri to Iu Nakare Yumi Tamura Shogakukan 5 book 1,
page 6-10

Spy × Family Spy × Family Tatsuya Endo Shueisha 5 book 7,
page 5-10

屋根裏部屋の公爵夫人 Yaneura Beya no Koshaku
Fujin

Fumino Mori Kadokawa
Game
Linkage

5 book 1,
page 5-9

ペパミント・スパイ Pepaminto supai Noriko Sasaki Hakusensha 5 book 1,
page 6-10
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