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Abstract—The objective of this article is to provide a new
approach for walking speed learning and generalization in
the speed-adaptation control of exoskeletons. By combin-
ing the gated and adaptive continuous-time recurrent neu-
ral network (GACTRNN), which has the potential to process
periodic signals, and the “sequence to sequence” struc-
ture, the S2S-GACTRNN model is proposed for walking
gait generation at different speeds. The “proactive loop”
and “reactive loop” were presented for learning and gen-
eralization capability evaluation, respectively, in the experi-
ments of sinusoidal signals and walking gait signals. First,
simulation experiments were carried out to evaluate the
S2S-GACTRNN’s learning and generalization capabilities of
sinusoidal signals with different frequencies. Second, in
offline experiments, the model was applied to deal with
walking gait signals to evaluate the capabilities of learn-
ing and generalization of walking speeds. Third, a client-
server system was constructed and an online prediction
method was proposed for online experiments to further
evaluate the trained model’s performance in walking speed
generalization. The mean absolute errors of S2S-GACTRNN
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trained using walking data at three speeds were reduced
by 24%, 38%, and 24% compared with that trained using
walking data at one speed. The results show that the model
has learning and generalization potential for gait signals
of different walking speeds and may be utilized as a new
approach to the adaptive control of walking speeds in the
field of exoskeletons.

Index Terms—Hip exoskeleton, learning and generaliza-
tion, recurrent neural network.

I. INTRODUCTION

A S a wearable device, lower limb exoskeletons are widely
used not only for the rehabilitation treatment of patients

with lower limb dysfunction such as paralysis, but also to provide
motor assistance for elderly individuals whose physical function
declines with age [1], [2], [3], [4]. The performance of the
exoskeleton depends on the control system and the matching de-
gree between assistance strategies and users. For users with fully
reduced walking ability (e.g., hemiplegia), one control strategy
of the exoskeleton is to drive users’ legs along a predefined
trajectory [5], [6], [7]. However, the exoskeleton faced some
challenges while assisting people with walking ability or partial
walking ability (e.g., elderly individuals and patients during late
recovery after stroke), e.g., reducing muscle activity and causing
abnormal muscle activity patterns [8]. In this case, users of the
exoskeleton do not always follow a fixed gait trajectory, but
adjust their gaits (e.g., walking speed) according to their needs,
which requires the exoskeleton to provide partial assistance for
lower limb movements. For example, users who normally walk
at relatively high speeds may reduce their walking speeds when
they become fatigued. In an emergency, the walking movements
of users may suddenly stop, causing the exoskeleton to dramat-
ically make adjustments. Consequently, a robust and adaptive
method is needed to enable self-dominated gaits for users to
move at different walking speeds [9], [10].

One approach to realizing speed adaptation is using model-
based methods, i.e., nonneural-networks. A nonlinear decen-
tralized control scheme for a lower-limb exoskeleton was de-
veloped to enable the wearers to stabilize the walking speed
to the desired value by changing their torso pitch angle [11].
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Although the experimental results show great stabilization and
tracking accuracy to the subjects’ desired velocities, it remains
difficult to real-time control loops due to the high cost of com-
puting resources [12]. Vallery et al. [13] proposed an online-
trajectory-generation method, named complementary limb mo-
tion estimation (CLME), to generate the reference trajectory of
the affected leg via that of the healthy leg by exploiting the
physiological inter-joint couplings. The CLME allows subjects
to autonomously generate the reference motion, but it may
be more suitable for users with at least one leg completely
healthy (e.g., hemiplegia). In addition to the information about
the healthy parts of individuals, the gaits or muscle states of
the assisted leg can be directly processed for the exoskeleton
to generate trajectories and to realize speed-adaptation control.
The adaptive oscillators (AOs), which are mathematical tools
capable of learning features such as the frequency and envelope
of a periodic signal, were utilized for trajectory generation [14],
[15], [16], [17], [18]. The AOs were put in parallel to construct
a pool of AOs for the decomposition and synthesis of walk-
ing gaits, to provide a reliable estimation of the trajectory at
different speeds [14]. Zheng et al. [15] proposed a gait phase
estimation strategy using a noncontact capacitive sensing system
and an AOs-based gait phase estimator, to reliably estimate the
gait phase from the information of the leg, when the walking
speed changes and when the sensing device is reworn. The
gait phase estimation performance got improved by utilizing
a more simplified sensing system for real-time control of an
active exoskeleton [16]. The experiments show that the strategy
performed an accurate estimation at different speeds in real time.
One premise of the AOs-based trajectory generation method is
that the gait trajectory can achieve the desired accuracy through
finite synthesis. Due to the inherent fluctuations of walking, the
AOs-based method may be sensitive to the tuning of the AOs
parameters, especially for a signal with several harmonics [17].
Besides, some measures need to be taken to reduce the adapting
time of the AOs. Additionally, dynamic movement primitive
(DMP) theory was deployed as a generator for trajectory plan-
ning during sit-to-stand motion based on a previously collected
database of trajectories as training samples [19]. The param-
eters in the DMP gait model can be modified to synchronize
the DMP trajectory speed with the user’s intended speed. One
challenge of the DMP gait model is that a complete motion
gait cycle or segment is needed to relearn a new DMP model
in the process of modeling and learning the users’ motion
gaits.

The other approach to realizing speed adaptation is using
model-free methods, i.e., data-driven neural networks. Essen-
tially, the walking gaits change alongside time changes, which
can be regarded as the signals with the features of time series
and can be processed by time-series related neural networks [20].
Neural networks have been utilized to extract some useful infor-
mation from motion patterns in the state of the art [21], [22], [23].
The convolutional neural network was employed to construct a
gait phase estimator to modulate exoskeleton assistance through
different locomotion mode settings [21]. The graph convolu-
tional network was also applied to recognize the four phases
of a one-leg gait during walking for gait phase classification

from the nonEuclidean domain [22]. A novel continuous-time
recurrent neural network (CTRNN) was proposed and showed
the potential to extract stochastic structures hidden in noisy time
series data used for training [24]. The variant, named stochastic
CTRNN (S-CTRNN), was utilized for a robot to reproduce la-
tent stochastic structures hidden in fluctuating tutoring trajecto-
ries [25]. The S-CTRNN was combined with Bayesian inference
to analyze drawings of different shapes that can be regarded
as multidimensional time series to investigate the underlying
cognitive mechanisms between humans and chimpanzees [26].

In our previous study, inspired by the brain’s general adap-
tation and dynamic tuning to sensorimotor information during
learning sequential information, we proposed a gated and adap-
tive CTRNN (GACTRNN) [27], [28]. The timescale value of the
GACTRNN steers how strongly or weakly a neuron is leaking,
thus how fast or slow it is forgetting its previous activation. The
GACTRNN can learn general patterns on multiple timescales
that could temporally vary notably because the neurons in the
models adapt and modulate their inherent timescale character-
istics via current inputs [28], which is similar to the perception
and adaption mechanism of brains. Using this mechanism, in this
study, we employed the GACTRNN for walking gait prediction
at different speeds to show its potential in walking speed gen-
eralization. To realize multistep prediction of gaits in the time
domain, the “sequence to sequence” (seq2seq) structure (a form
of processing while using the recurrent neural network [29])
is combined with the GACTRNN, to construct the seq2seq
GACTRNN (S2S-GACTRNN) for time-series processing.

The contributions of this study are to propose the S2S-
GACTRNN which is based on the “sequence to sequence”
structure and the GACTRNN, whose perception and adaptation
mechanism is similar to that of the brain, and to apply the
proposed network for walking speed learning and generalization
in the field of exoskeletons using the “proactive loop” and
“reactive loop”. Simulation experiments of sinusoidal signals
with different frequencies, and offline experiments and online
experiments of walking gait signals at different speeds were
carried out to evaluate the model’s learning and generalization
capability. The overview of this study is shown in Fig. 1.

II. S2S-GACTRNN AND EXPERIMENTAL PLATFORM

In terms of gait prediction, the GACTRNN model is needed
to process the gaits from the previous period and to predict the
gaits in the subsequent period. To achieve a more reasonable
sequence prediction, the input and prediction sequence of the
model should retain their time sequence information, and both
the input process and generation process must be in order. There-
fore, the seq2seq structure is combined with GACTRNN to build
the network model in this article. Moreover, the experimental
platform is described in this section.

A. S2S-GACTRNN

1) Model: The hybrid S2S-GACTRNN, unfolded by time
steps, is shown in Fig. 2. The seq2seq model, including an
encoder and a decoder, is a form of processing while using the
RNN, whose input sequence and output sequence may not have
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Fig. 1. Overview of this study. (a) S2S-GACTRNN model inspired by brain science. (b) Simulation and offline experiments using sinusoidal
signals and walking data from three subjects to evaluate S2S-GACTRNN’s learning and generalization capabilities. (c) Online walking experiments
at different speeds to further verify the trained model’s generalization capability.

Fig. 2. S2S-GACTRNN model includes an encoder and a decoder. {xi} and {yi} are the input and output sequences, respectively. zt and z′t
are the internal states of the encoder and decoder, respectively. c represents the context vector that contains the information of the input sequence.
Each unit (green circles) is a GACTRNN unit whose computational mechanism is shown on the right.

the same length [30]. The input sequence{xi} is chronologically
fed and encoded into the context vector c, which contains the
input information. The vector c is used as input of the decoder
at each time step in the decoding process to generate the output
sequence {yi} afterward. N and M represent the length of the
input sequence and the length of the output sequence, respec-
tively. Since vector c contains the hidden feature information
of the input sequence and is used in each time step of the
decoding process, the generated sequence can be considered a
comprehensive prediction of the input sequence.

Each unit in the S2S-GACTRNN model is a GACTRNN unit,
whose characteristic is shown on the right side of Fig. 2. In tasks
with discrete numbers of time steps, the GACTRNN can be
employed as a discrete model. As a result, the activation y of
GACTRNN units is defined as follows:

yt = f (zt) (1)

zt =

(
1 − 1

τ t

)
zt−1 +

1
τ t

(Wx+Vyt−1 + b) (2)

τ t = 1 + exp (Hx+Gyt−1 + a+ τ 0) (3)

for inputsx, internal states zt at time step t and previous internal
states zt−1, weights W and V, and bias b. f represents the ac-
tivation function: tanh(x) = ex−e−x

ex+e−x . The timescale parameter
τ t expresses the leakage of neurons, which can be a scalar or
vector. The constant τ 0 can be computed by the initial value
of the timescale parameter τ before training: τ 0 = log(τ − 1).
Compared with the CTRNN, the additional trainable parameters

are introduced in the GACTRNN to complete the gated and
adaptive characteristics: H, G, and a, which represent the input
weights, recurrent weights, and bias on the timescale, respec-
tively. The external input x was fed to the model at each time
step and multiplied by H, to modulate the timescale τ t. Since
H is directly related to the input x, the GACTRNN may adjust
the leakage of the internal state according to the current external
input x and may have a stronger capability for processing cyclic
signals compared with the CTRNN.

The GACTRNN neurons can be grouped into several modules
and share the same timescale in each module [28]. All these
modules are recurrently interconnected using a dense strategy.
For example, an encoder with (m1, m2, m3, m4) neurons with
timescales (τ1, τ2, τ3, τ4) means that the encoder has four
modules of different sizes with their initial values of timescales.
In this study, to simplify the model, both the encoder and decoder
share the same number of modules and neurons, as well as
the timescales. “MSE” and “RMSProp” are selected as the loss
function and optimizer, respectively, for model training.

2) Proactive Loop & Reactive Loop: After being trained by
datasets, the network can generate the output sequence as pre-
dictions of the previous input sequence. To evaluate the model’s
characteristics, there are two different ways (refer to Fig. 3) to
generate predictions depending on thekth input sequence

{
x

(k)
i

}

a) Proactive loop

x
(k)
i =

{
x
(k−1)
i+M , 1 ≤ i ≤ N−M

y
(k−1)
i+M−N,N−M+ 1 ≤ i ≤ N

(4)
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Fig. 3. Two generation methods. (a) Proactive loop related to learning
capability. The kth input sequence {x(k)

i } consists of two parts: The latter

part of the inputs {x(k−1)
i } (blue and orange cubes) and the whole out-

puts {y(k−1)
i } of the (k − 1)th prediction (yellow cubes). (b) Reactive loop

related to generalization capability. The current inputs are the external
inputs.

whereN andM represent the length of the input sequence
and the length of the output sequence, respectively.
x
(k−1)
i+M , y(k−1)

i+M−N represents the input at time step i+M
and the output at time step i+M−N, respectively, of
the (k − 1)th prediction.

b) Reactive loop

x
(k)
i = x

(k)
i,ext, 1 ≤ i ≤ N (5)

where x
(k)
i,ext represents the external input at time step i

of the kth prediction.
In the “proactive loop”, thekth input sequence {x(k)

i } consists

of two parts: The latter part of the inputs {x(k−1)
i } and the whole

outputs {y(k−1)
i } of the (k − 1)th prediction. The (k − 1)th

outputs of the network are used for the kth prediction (like a
closed loop), which means that no external inputs will be needed
in subsequent predictions except for the first prediction. This
method is deployed to evaluate the learning capability in the
following experiments.

The “reactive loop” is commonly employed in neural net-
works. The current external signals are fed to the network as
inputs to make a prediction. This method is deployed to evaluate
the generalization capability in the following experiments.

B. Experimental Platform

A hip joint exoskeleton is utilized in the experiments. The
exoskeleton comprised a 3-DOF concentric series mechanism,
novel series elastic actuator (SEA), thigh bar, and 3-D printed
component, with an active flexion-extension degree of freedom
on the sagittal plane and two passive degrees of freedom on the
axial and coronal planes (refer to Fig. 4). The thigh bar is driven
by the SEA and can be bundled to the wearer’s thigh with the 3-D
printed component and bandages. The SEA includes a frameless
motor, harmonic reducer, and constant-stiffness torsion spring,
on either side of which a rotary magnetic encoder is installed for
angle measurement (motor encoder and joint encoder). The hip
joint angle can be obtained by the encoder and the output torque
of the SEA can be calculated by Hooke’s law. An experimental
platform is built for the subsequent exoskeleton experiments,

Fig. 4. Hip joint exoskeleton and series elastic actuator (SEA).

Fig. 5. Experimental platform includes a hip exoskeleton, a frame
for supporting, a box with integrated control system hardware, and a
treadmill.

as shown in Fig. 5. The hip joint exoskeleton is fixed to a
supporting frame with a treadmill below it. The supporting frame
is equipped with a ball screw mechanism, which allows subjects
to adjust the exoskeleton to the heights corresponding to their
leg lengths. The control system hardware is integrated into a box
and installed behind the exoskeleton. The speed of the treadmill
can be regulated from 0.1 to 10.0 km/h with a minimum speed
interval of 0.1 km/h. The treadmill control panel is equipped
with a clock for timing the experiments.

III. SIMULATION AND OFFLINE EXPERIMENTS

The GACTRNN model is inspired by brain science and
has been verified to capture patterns and underlying temporal
characteristics from input sequences. For example, the model
can generate different whole Lissajous shapes according to
only their initial curves [28]. Therefore, a trained model can
learn some characteristics of the training data and contain prior
experience with the training data. Similarly, as a variant, it is
necessary to evaluate this “learning capability” of the S2S-
GACTRNN model. The “proactive loop” mode of the model
will be employed to generate continuous sequence prediction
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and the learning capability of the model will be verified by the
reproduction of the characteristics of the training signals.

Additionally, the generalization capability of the neural net-
work is worthy of attention when building and training a net-
work, which essentially refers to the ability of the model to learn
from given data and apply what the model has learned elsewhere.
Generalization is one of the features most useful and specific to
neural networks [31]. Similarly, for the S2S-GACTRNN model
built in this article, we use the trained model to make predictions
for the external inputs with different signal characteristics (in
“reactive loop” mode) and investigate the prediction and gener-
alization errors of S2S-GACTRNN to verify the generalization
capability.

Generally, the performance of neural networks is related to the
scale and the amount of training data. In this study, using the data
from simulation and real-world walking for training, the S2S-
GACTRNN model’s learning and generalization capabilities of
periodic signals on small-scale datasets were investigated. First,
simulation experiments with sinusoidal signals were carried out
to verify S2S-GACTRNN’s ability to process periodic signals
with different frequencies. Subsequently, the model was used
to process a more complex period signal—the walking gait
signal, which may have varying frequency and amplitude with
walking speed. The offline experiments using real-world walk-
ing data were carried out to evaluate the model’s learning and
generalization capabilities of walking gait signals at different
speeds, to show S2S-GACTRNN’s potential for adaptive speed
control.

A. Simulation Experiments of Sinusoidal Signals

1) Data Acquisition: The sinusoidal signals include the
fixed-frequency signal (FFS) for network training and learning
evaluation and the varying-frequency signal (VFS) for general-
ization evaluation. Both kinds of signals are generated by

y = 2 sin

(
2π
T

t

)
+N

(
0, 0.12

)
(6)

where T is the signal period, N
(
0, 0.12

)
is Gaussian noise with

a mean value of 0 and standard deviation of 0.1, and t is the time
length. The signal sampling time is set to 50 milliseconds. For
FFS and VFS, parameter T is set to

a) FFS (for training and learning evaluation): T = T1, T2,
T3, . . .. A dataset of training data is generated for each
Ti. In this way, several datasets of different fixed periods
are obtained for model training and learning capability
evaluation in the “proactive loop”.

b) VFS (for generalization evaluation): T = 1.2 s, 1.3 s, . . .,
2.4 s. By generating a five-cycle signal for each T (setting
t = 5 T) and splicing them in order of ascending period, a
dataset of sinusoidal signals with different frequencies is
obtained for model generalization in the “reactive loop”.

2) Learning Capability: We used four datasets of FFS with
T = 1.0 s, 1.5 s, 2.0 s, and 2.5 s (all the time lengths were set to
t = 60 s) to train a model with (6, 6, 6, 6) neurons and timescales
(1, 3, 9, 27). The length of the input sequence and the length of
the output sequence were set to N=25 and M=3, respectively.

Fig. 6. Predictions of sinusoidal signals with different periods in the
“proactive loop” y = 2 sin

(
2π
T t

)
+N

(
0, 0.12

)
. (a) T = 1.0 s. (b) T =

1.5 s. (c) T = 2.0 s. (d) T = 2.5 s.

Subsequently, the initial values of another four sinusoidal signals
with the above signal periods were fed to the trained model
and the predictions were generated in the “proactive loop”. The
results showed that the trained model was able to reproduce the
whole sinusoidal signals with different periods via the initial
values of signals (refer to Fig. 6), which meant that the model
gained some prior knowledge from the training sets and that the
S2S-GACTRNN model had a certain capability of learning the
characteristics of sinusoidal signals with different periods. In
addition, due to the prediction errors, the accumulation of errors
would cause the generated curve to deviate from the actual curve
more significantly deviating with future time steps.

3) Generalization Capability: To evaluate the generalization
capability, two S2S-GACTRNN models were obtained by using
different training data–the first model was trained by one dataset
of FFS with T = 1.8 s (set to t = 60 s), while the second model
was trained by three datasets of FFS with T = 1.7 s, 1.8 s, and
1.9 s (also set to t = 60 s). The length of the input sequence
and the length of the output sequence were set to N = 25 and
M = 3, respectively. Both models shared the same hyperparam-
eters: (6, 6, 6, 6) neurons with timescales (1, 5, 25, 125), and
15% of the training data were split for model validation during
training.

Since the VFS contains sinusoidal signals with a wider range
of periods (T = 1.2 s, 1.3 s,..., 2.4 s) than FFS, applying trained
models (the first model was trained by FFS with T = 1.8 s, and
the second model was trained by FFS with T = 1.7 s, 1.8 s, and
1.9 s) for the prediction of VFS can help evaluate the model’s
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Fig. 7. Prediction error of the simulation experiments of varying-frequency signals. (a) Model is trained by 1 dataset. (b) Model is trained by 3
datasets.

Fig. 8. Block diagram of the transparent mode based on the PD con-
troller.

generalization capability with the guideline that a lower predic-
tion error means a stronger generalization capability. The errors
between the prediction and the ground truth were calculated
to evaluate the prediction accuracy, as shown in Fig. 7. Both
models performed better in predicting the sinusoidal signals at
the periods of their training signals (T = 1.8 s and T = 1.7 s,
1.8 s, and 1.9 s, respectively) compared with other periods. With
an increase in signal period deviation, the prediction errors of
the two models also gradually increased (both increasing direc-
tion and decreasing direction), meaning that the generalization
capability of the model declined. Moreover, by comparing the
two error curves, the generalization errors of the model trained
by three datasets of FFS were significantly smaller than those
trained by only one dataset of FFS. The results indicate that the
S2S-GACTRNN model has potential capability in the prediction
task of sinusoidal signals with different frequencies and that
the generalization capability can be improved by using more
datasets in model training.

B. Offline Experiments of Walking Gait Signals

1) Data Acquisition: To obtain the data on human walking
gaits, we carried out experiments in which the subjects walked
on a treadmill wearing the exoskeleton. The exoskeleton worked
in the transparent mode based on the PD controller with the joint
torque τ o calculated for feedback (refer to Fig. 8), which had
minimum output impedance, allowing the user to freely move
while walking [32]. Gravity compensation was not employed for
the control due to the small quality of the thigh bar. The other
two passive degrees of freedom of the hip joint exoskeleton were
restricted in case of disturbance. The data from the encoder were
collected with a sampling rate of 100 Hz and the hip joint angle
values were calculated and recorded. Two types of gait signals
are collected

a) Fixed-speed signal (FSS, for training and learning eval-
uation): The subject walked on the treadmill for 60 s
at a fixed speed during one data acquisition experiment.

Fig. 9. Predictions of walking gait signals at v = 1.0 km/h and 3.0 km/h
in the “proactive loop”. The trained model reproduced the corresponding
frequencies (or periods) and valley values of walking gaits.

Several datasets of walking gaits at different fixed walking
speeds were obtained for model training and learning
capability evaluation in the “proactive loop”.

b) Varying-speed signal (VSS, for generalization evalua-
tion): The subject walked at an initial speed of v =
1.0 km/h, and subsequently, the speed was manually
increased by 0.2 km/h until 3.0 km/h every 10 s via a
control panel. One dataset of walking gaits at varying
walking speeds was obtained for model generalization in
the “reactive loop”.

2) Learning Capability: Two datasets of FSS with
v=1.0 km/h and 3.0 km/h were utilized in this experiment,
and both time lengths were set to t = 600 s. The step size of
the sliding window for dataset construction was set to 10 to
simplify training. These two datasets were selected to train a
network with (16, 16, 16, 16) neurons and timescales (1, 6, 36,
216). The length of the input sequence and the length of the
output sequence were set to N = 100 and M = 10, respectively.
After training, the initial values of another two walking gait
signals at the above walking speeds were input to the model
to generate a prediction in the “proactive loop”. As shown in
Fig. 9, both prediction curves reproduced the characteristics of
their gait signals to a certain extent, including amplitude and
frequency. Similar to the sinusoidal simulation experiments,
the prediction value increasingly deviated from the ground
truth, which may be attributed to the accumulation of errors
and the instability of gaits in the process of walking. The
experimental results showed that the trained model can learn
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Fig. 10. Prediction results of the offline experiments of the varying-speed signal. (a)(b)(c): Model is trained by 1 dataset. (d)(e)(f): Model is trained
by 3 datasets. (g)(h)(i): Mean absolute errors of predictions. (a)(d)(g), (b)(e)(h), (c)(f)(i) are the online results of subject A, B, C, respectively.

TABLE I
PARTICIPANT INFORMATION

and reproduce different gaits at two speeds (v = 1.0, 3.0 km/h),
respectively.

Overall, we make two noteworthy observations. First, the
model effectively learned the frequencies of the two walking gait
signals. Second, the model reproduced the corresponding valley
values to a certain extent for the two signals, which indicates that
the model also has a certain capability of learning the amplitude
of walking gait signals.

3) Generalization Capability: Similar to the sinusoidal sig-
nal experiments, two S2S-GACTRNN models were trained by
different data for generalization capability evaluation—the first
model by FSS at a speed of v = 2.0 km/h and the second model
by FSS of v = 1.8, 2.0, and 2.2 km/h (3 datasets in total).
Considering that the sampling time of the walking gait signals
was 10 milliseconds, we set the length of the input sequence
and the length of the output sequence to N=100 and M=10,
respectively, meaning that the trained models were intended to
predict the walking gaits of the next 0.1 s via the gaits of the
previous 1 s. The hyperparameters were set to (20, 16, 12, 8)
neurons with timescales (1, 6, 36, 216).

After training, both models were then applied for the predic-
tion of VSS. We conducted the same experiments with different
subjects (represented by A, B, and C; refer to Table I). The
experiments were approved by the Local Ethics Committee of
Beihang University. All the subjects read and signed informed
consent forms before the experiments.

The prediction results are shown in Fig. 10. Both models
performed better in predicting the walking gait signals at the
speeds of their training signals (v = 2.0 km/h and v = 1.8, 2.0,
and 2.2 km/h) compared with other speeds. Moreover, although
VSS is more complex than VFS due to the varying frequency
and amplitude with varying walking speeds, by comparing
these two models’ performance on VSS, we can understand the
S2S-GACTRNN model’s capability and the implications of the
number of training datasets. The mean absolute error (MAE)
of prediction at each speed was calculated for analysis [refer to
Fig. 10(g)–(i)]. Both models’ errors increased with an increase
in the speed deviation (both increasing direction and decreasing
direction). Additionally, the average generalization errors of the
model trained by three datasets of FSS were reduced by 24.51%,
28.35%, and 24.61% compared with those trained by only one
dataset of FSS, indicating that the generalization capability of
the S2S-GACTRNN model can be improved by more training
data.

IV. ONLINE WALKING GAIT PREDICTION EXPERIMENTS

In the above offline experiments, the walking gait signals
of each subject were employed for model training. The S2S-
GACTRNN model’s generalization capability of processing
walking gait signals at different speeds was verified. In this
section, online prediction experiments were conducted using the
previously trained models (2 models for each subject) to further
verify the trained model’s generalization capability.

A. System Architecture & Online Prediction Method

Since the neural network and motion controller ran on dif-
ferent devices, a client-server system was constructed for the
transmission of the real-time and prediction gait data (refer to
Fig. 11). A server was deployed on an upper computer (PC), on
which the neural network ran in an infinite loop awaiting requests
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Fig. 11. System architecture: A client-server system was constructed
to realize the transmission of the real-time and prediction gait data.

Fig. 12. Online prediction method: All the prediction sequences (red
dots) were segmented and spliced to generate a continuous sequence.

from the client. The lower computer, which works for the motion
control to keep the exoskeleton in the abovementioned transpar-
ent mode, deployed a client in charge of acquiring gait signals
from the joint encoder and transmitting them to the server. The
transmission between the server and the client was based on the
TCP/IP protocols. A complete prediction process is described
as follows:

1) Signal acquisition: When the subject was walking on the
treadmill wearing the exoskeleton, the motion controller
always computed and recorded the last 100 hip-joint-
angle values from the joint encoder (via the EtherCAT
protocol) at a sampling time of 10 milliseconds as gait
signals for transmission.

2) Data transmission: While making a prediction (the timing
is described below), the motion controller packs and
transmits the 100-angle-value data from the client to the
server via the TCP/IP protocol.

3) Gait prediction: Once the server receives data, an unpack-
ing and predicting process is conducted by the neural net-
work, and 10 prediction gait angle values are generated.
These 10 values are packed and transmitted back to the
client. Next, the motion controller obtained the prediction
gaits by unpacking the received data.

Considering that both data transmission and forward propa-
gation of the neural network prediction were time consuming,
the sequence obtained from each prediction was segmented and
spliced to generate a continuous sequence, as depicted in Fig. 12.
Since the sampling time was 10 milliseconds, the client was set

to transmit data (blue lines) to the server every 50 milliseconds
and simultaneously received the last prediction values (10 red
dots after each blue line) from the server. The moment is
marked with asterisks. The last 5 prediction values generated
in each prediction process were used to form a time-continuous
sequence.

B. Experimental Process

The same three subjects were recruited to participate in the
online walking gait prediction experiments to further verify
the generalization capability of the trained models. Similar to
the offline experiments, in each subject’s online experiments,
two neural network models were utilized for data prediction
trained by their respective walking data–the first model by FSS
at a speed of v = 2.0 km/h and the second model by FSS of v =
1.8, 2.0, and 2.2 km/h. First, the server and client started and the
exoskeleton was set to the PD controller-based transparent mode.
Subsequently, the subject walked on the treadmill wearing the
exoskeleton at an initial speed of v=1.0 km/h. When the walking
became smooth, we sent a request from the client to the server for
connection establishment. After a short wait for the connection
to stabilize, the client started to send real-time gait data and
receive prediction values every 50 ms. We used the treadmill
clock to time the walking and increased the speed of the treadmill
by 0.2 km/h every 10 s by pressing the acceleration button on the
control panel. After the subject walked at a speed of 3.0 km/h for
10 s, the client was manually terminated and one experiment was
finished. During the experiment, the motion controller generated
a continuous sequence of predictions via the above method and
saved all the necessary data via the data storage channel. After
each experiment, a transmitted and received data comparison
was carried out to check whether data packet loss occurred and
to ensure the effectiveness of the data.

C. Results

The generalization capability of S2S-GACTRNN was eval-
uated by the errors (refer to Fig. 13) between the prediction
value and the ground truth. We calculated the mean absolute
error at each speed, as shown in Fig. 13(g)–(i). The error curves
of the online experiments are similar to those of the offline
experiments. When walking at speeds corresponding to those
of the gaits used in model training (v=2.0 km/h and v=1.8, 2.0,
and 2.2 km/h, respectively), the prediction errors were lower
than the prediction errors that occurred at other speeds. As the
walking speed gradually deviated from the training speed, the
prediction error gradually increased. Moreover, from a com-
parison of the results, the overall generalization errors of the
model trained by three datasets of gait signals with different
speeds were reduced by 24.08%, 37.99%, and 24.04% com-
pared with that trained by one dataset of gait signals, indicating
that the generalization capability of the S2S-GACTRNN was
improved with the increase in training data. Overall, the trained
model’s generalization capability of gait signals was verified
by online experiments, indicating that the S2S-GACTRNN
model has the potential to process walking gaits at different
speeds.
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Fig. 13. Prediction results of the online experiments of the varying-speed signal. (a)(b)(c): Model is trained by 1 dataset. (d)(e)(f): Model is trained
by 3 datasets. (g)(h)(i): Mean absolute errors of predictions. (a)(d)(g), (b)(e)(h), (c)(f)(i) are the online results of subject A, B, C, respectively.

Fig. 14. Performance of SimpleRNN, LSTM, CTRNN, and GACTRNN.

V. DISCUSSION

A. Methods Comparison

The DMP theory is one method for trajectory generation [19].
While using DMP, a complete cycle or segment of the signals
is needed for parameter learning. However, the proposed S2S-
GACTRNN can make predictions for walking gaits of the next
0.1 s via the gaits of the previous 1 s, which allows it to be
more flexibly employed. Another way to generate trajectories
is the adaptive oscillator [14], which is similar to a real-time
Fourier decomposition. However, a trained S2S-GACTRNN
makes predictions based on prior experience and external inputs
similar to the brain, while the adaptive oscillator is based on
only external inputs. Therefore, compared with the adaptive
oscillator, S2S-GACTRNN may have some characteristics of
the brain and may be biologically reasonable.

Comparative experiments were also conducted to present the
generalization capability of the S2S-GACTRNN with regard to
other networks. Three other neurons (simple recurrent neural
network (SimpleRNN), Long Short-Term Memory (LSTM), and
CTRNN) were used to construct networks using the “seq2seq”
structure with the same number of neurons. After trained by
FSS of v=1.8, 2.0, and 2.2 km/h, the networks were applied
for the prediction of VSS (refer to Fig. 14). The MAEs of the
SimpleRNN, LSTM, CTRNN, and GACTRNN are 0.54◦, 0.39◦,

Fig. 15. Performance of Single-GACTRNN (without seq2seq) and
S2S-GACTRNN (with the seq2seq structure).

0.36◦, and 0.33◦ for all speeds, indicating that the GACTRNN
neuron may have a greater capability of walking speed general-
ization.

The S2S-GACTRNN model proposed in this article is a com-
bination of the “seq2seq” structure and GACTRNN. An ablation
experiment was conducted to analyze the effect of using the
“seq2seq” structure on model performance (refer to Fig. 15). The
MAE of the Single-GACTRNN (without seq2seq) is higher than
the MAE of the S2S-GACTRNN (with the seq2seq structure)
at each walking speed, indicating that the seq2seq structure can
help improve network performance.

B. Similarities Between the Brain and the
S2S-GACTRNN

The development of brain science is important to the analysis
of biological behaviors [33]. In the process of perception of
the outside world, biological individuals constantly collect and
learn from information to form their cognition of the environ-
ment, which will be stored in the brain as prior knowledge
to guide their movements [34]. The brain seems to perform
this task by learning from perception and actions on different
timescales and by well adapting to changing temporal vari-
ance [35]. In particular, the brain exhibits temporal abstraction
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and compositionality characteristics that seem to emerge from
intrinsic timescale properties in neuromodulation, as well as
mode coupling between two neurons across the cortex [36],
[37]. This combination of prior experience and sensory inputs
has been applied to explain key features of autism [38]. To some
extent, the application of the proposed S2S-GACTRNN model
to walking gait processing draws lessons from brain science
research. Similar to the brain, S2S-GACTRNN learns certain
characteristics of signals and obtains prior experience through
model training. Specifically, the network learns to represent
components of those signals and simultaneously learns to flexi-
bly vary the temporal extent of such components by modulating
the timescales. In this way, the model can recognize differences
in the timescales of the perceived signal and dynamically adapt
its activation. When applied to a prediction task, a trained model
makes inferences about the external input signals using the
learned knowledge. This mechanism of prior experience and ex-
ternal inputs provides S2S-GACTRNN with the generalization
capability of processing biological signals, e.g., walking speed
generalization.

C. Characteristics of S2S-GACTRNN

The experimental results show that the proposed model has
the potential for generalization while processing human walking
gaits at different speeds, which may be improved by using more
training data. Considering that only walking gaits are needed,
this generalization method only needs to use an encoder for angle
measurement without using other sensors (EMG, EEG, IMU,
etc.) [39], which may introduce convenience to the application
of exoskeletons and avoid difficulties in multisensor fusion algo-
rithm design [40]. Since the results showed the potential of the
S2S-GACTRNN in walking speed generalization, the proposed
model may be used as a new approach to the adaptive control of
the wearer’s different walking speeds in the field of exoskeletons.
For example, the model can be employed to design a speed
adaptive controller to provide suitable assistance for elderly
individuals or patients with lower limb motor dysfunction to
walk at different speeds. Second, in addition to evaluating the
generalization capability of flat-ground walking gaits at different
speeds, by optimizing the structure and parameters, the appli-
cation scenarios of the model may be extended. For example,
the proposed model may be used to process the walking gaits of
different terrains.

D. Robustness

Some external disturbances (including force and measure-
ment error) may be encountered during experiments, which may
affect the results. Since the exoskeleton works in transparent
mode, the force disturbance can be considered to have a slight
influence on the experiments. However, even with accurate
sensors and appropriate filtering algorithms, angle measurement
error is difficult to avoid. Therefore, a robustness test was carried
out. Gaussian noise N

(
μ, σ2

)
was added to the input data of the

trained network every 100 ms to simulate the angle measurement
error of the discontinuity type. As shown in Fig. 16, the MAE
slightly increases when σ is lower than 1.00, which shows

Fig. 16. Robustness test (with and without Gaussian noise).

that the model has a certain robustness to the added noise.
The MAE significantly increased when σ reached 1.00. Since
the peak-to-peak value of the angle is approximately 30◦ and
the probability that the value of N

(
0, 12

)
falls within (−3◦, 3◦)

is approximately 99.74%, the maximum allowable inaccuracy
of amplitude measurement is approximately 10%.

E. Limitations

Although the experimental results are encouraging in this
study, limitations still exist. First, the network only used the gaits
of a single hip joint, although using the gaits of multiple lower
limb joints may produce a more comprehensive study. Second,
due to the variability of walking gaits, more gait datasets may be
acquired for training and the complexity of the network may be
increased to learn more prior experience. Third, the length of the
output sequence or the sampling time of the gaits may be changed
to study whether a longer-time gait can be predicted to facilitate
the design of the controller. Besides, compared with nonDNN
approaches, the DNN-based method not only requires the wearer
to have or partially have the ability to walk for gait collection,
but also increases the training expense (approximately 1 h for
training 1 model). Hardware acceleration measures are needed
with the enlargement of data.

VI. CONCLUSION

In this study, a novel neural network that combines
the “sequence to sequence” structure and gated and adap-
tive continuous-time recurrent neural network, named S2S-
GACTRNN, was proposed to process periodic signals, including
sinusoidal signals with different frequencies and walking gait
signals at different speeds. Simulation experiments of sinusoidal
signals with different frequencies and offline experiments and
online experiments of walking gait signals at different speeds
were carried out to evaluate the model’s learning and gener-
alization capability respectively. The final online experimental
results showed that the mean absolute errors of S2S-GACTRNN
trained using walking data at three speeds were reduced by 24%,
38%, and 24% compared with that trained using walking data
at one speed. The S2S-GACTRNN has the potential for walk-
ing speed learning and generalization, and the generalization
performance may be improved by using more training data.
The S2S-GACTRNN may be utilized as a new method for the
speed-adaptation control of exoskeletons to provide users with
corresponding assistance at different speeds in their daily lives.
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