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Abstract. Neural decoding is an important method in cognitive neuro-
science that aims to decode brain representations from recorded neural
activity using a multivariate machine learning model. The THINGS ini-
tiative [11] provides a large EEG dataset of 46 subjects watching rapidly
shown images. Here, we test the feasibility of using this method for decod-
ing high-level object features using recent deep learning models. We cre-
ate a derivative dataset from this of living vs non-living entities test 15
different deep learning models with 5 different architectures and compare
to a SOTA linear model. We show that the linear model is not able to
solve the decoding task, while almost all the deep learning models are
successful, suggesting that in some cases non-linear models are needed to
decode neural representations. We also run a comparative study of the
models’ performance on individual object categories, and suggest how
artificial neural networks can be used to study brain activity.

Keywords: EEG · Neural Decoding · Deep Learning · THINGS ·
Benchmark

1 Introduction

The human brain is still the most advanced information-processing entity we
know of, with incredible efficiency, efficacy and adaptability. However, the details
of how information is represented and processed in the brain at the algorithmic
level are elusive to us. Furthering this understanding holds great potential for
understanding intelligence at a deeper level. Neural decoding is a somewhat
recent technique for studying neural representations. It consists of applying a
machine learning (ML) model to recordings of brain activity, to decode repre-
sentations in the brain [18]. Here decoding is finding dissociations in the neural
activity associated with different stimuli or conditions. When dissociation is suc-
cessful, that neural activity is taken to contain relevant information about the
conditional difference, thereby giving scientists a clue on what information is
present where and when in coganitive processing. Neural decoding, using mul-
tivariate statistical or ML approaches, has gained popularity among cognitive
neuroscientists as a tool to analyse their experimental data, replacing, to some
degree, the traditional approach of inferential statistics on univariate measures
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of individual voxels or electrodes using generalised linear models [8]. Recently,
neural decoding has given great insight into among others vision science [23],
face processing [14]. The imaging technique focused on in this paper is elec-
troencephalography (EEG). EEG offers a non-invasive way to measure neural
activity with a very high sampling rate at the cost of a lower spatial resolution
when compared to other popular imaging techniques. Whereas high accuracy in
traditional neural decoding is not essential - if decoding happens reliably it is
taken as such, other fields using similar techniques have great interest in creating
models able to efficiently learn associations between brain patterns in EEG and
behaviour, intention or cognitive state [23]. Among these fields is the study of
brain-computer interfaces (BCI), where the aim is to allow interactions with a
computer using only neural recordings. Medical fields are also starting to rely on
using computational analysis of brain activity to diagnose neurological diseases
such as depression[27] and dementia [15]. Other fields that also benefit from
high-performing models on neural data are affective computing [16], and stim-
ulus reconstruction [3]. Therefore, developing models that can effectively learn
the patterns in EEG signals is highly important. Even for traditional cognitive
neural decoding, simpler models might not be able to successfully find some
associations that only show in highly nonlinear relationships [10].

Deep learning (DL) models have, especially in the last 10 years, shown their
power in modelling nonlinear relationships. Even so much that they have got-
ten to human or superhuman levels in some cognitively relevant tasks. This
has caused interest from cognitive neuroscientists to figure out how to utilise
these tools best in their work [6]. The main requirement for these models to
work has been collecting enough high-quality data for training. Especially, scal-
ing into very large models has required scaling the sample size as well. A few
large EEG datasets exist in different domains, for example diagnosis [7] and
BCI [13]. None of these holds as much potential for insight into cognition as
the THINGS initiative [12]. THINGS contain 12 or more naturalistic images of
1,854 different objects with plenty of semantic details described for each object
category including wordnet relationships and human-rated high-level categories.
Crucially, recordings of humans watching these images now exist both for fMRI,
MEG and EEG [9]. The EEG dataset by [11] has 46 subjects all viewing 22,248
images, resulting in 1,023,408 total trials, which we believe warrants an inter-
est from the computational cognitive neuroscience community. Despite this, not
much work has been done in trying to utilise the large dataset for bigger DL
models. This is why we, in this work, aim to take the first steps in exploring and
benchmarking a simple task derived from this dataset using different popular
DL models and comparing them to the best linear modelling techniques.

2 Related Works

The THINGS EEG dataset presents a unique challenge in decoding because of
its experimental constraints. To practically let each subject watch 22,248 images,
they are shown in rapid succession. Specifically 50 ms stimulus time and 50 ms
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off duty. That means ten images are shown per second. This presumably limits
the amount of information processing the subject is doing per image, which
is part of why this work needs to be benchmarked. An important constraint
then is the short time window of the relevant signal. Crucially, this makes a
frequency representation of the data less feasible. Band power representation
has otherwise shown to be greatly suited for DL on EEG [30]. Therefore, we
are tasked with analysing the untransformed time representation, which limits
the possible comparisons for this work. The closest work in this area, to our
best knowledge, comes from the BCI community, where benchmarking model
performance is important. The MOABB project [13] lays out a variety of BCI
datasets of various sizes and collects them for standardised testing. Interestingly,
according to their leaderboards, almost all BCI applications are best solved using
a linear decoder pipeline. It is worth noting that BCI tasks are often chosen
specifically because they are easily solved by a linear model. For example, a
binary motor imagery task often consists of imagining moving either the right or
the left arm. This should create a clear lateralisation in the signal, which is easily
picked up by a linear model. We, therefore, should include a linear modelling
approach in our study to compare deep learning models.

Recently, the THINGS MEG dataset was used for real-time image reconstruc-
tion [3]. While MEG and EEG measure very similar signals, the MEG THINGS
dataset did not have the ten images per second setup, making comparisons less
easy. They used a convolutional model with residual connections introduced in
[4] to get a 7X improvement to a linear baseline model, although their task
included the original 1854 object categories, which is different to the task used
here.

3 Methods

3.1 Task

To keep in line with more traditional decoding paradigms, we introduce a novel
binary classification task created from a subset of the EEG THINGS dataset.
We want the task to be cognitively relevant and non-trivial to solve while still
being possible. We chose the task of separating living vs nonliving things - specif-
ically objects that are easily manipulated by hands. It is an established finding
that this high-level categorisation can be separated by visual stimulation using
fMRI [21] and EEG [1]. We chose 429 object concepts (of the original 1854)
that fit into these two categories from the human-labeled categories provided by
the original THINGS paper [12]. Specifically, we used the “Top-down Category
(manual selection)”. The categories chosen for handleable objects are: “tool”,
“sports equipment”, “musical instrument”, “electronic device”, and “weapon”,
and for living the categories are: “animal”, “animal, bird”, “animal, insect”,
“animal, food”, “body part”. Note that “animal, food” refers to animals that
could be eaten (e.g. “eel”) but the picture is of a living animal, not food. It is
worth noting that while the overall classes are completely balanced, the object
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categories used to construct them are not. This is not a purposeful construc-
tion, but a byproduct of the human-labeled categories of naturalistic images.
An analysis of object-level performance is provided later. With 12 repetitions of
each label and 46 subjects, that gives the task 236,808 total number of trials.
We judge this to be adequate to start testing DL models with reasonably large
parameter sets. We also created a single-subject task, in which each subject”s
data was treated separately, resulting in 5,148 samples per subject.

3.2 Preprocessing

We kept preprocessing minimal [5]. The original data was referenced inconsis-
tently in some subjects, we fixed this by re-referencing the data to the Cz elec-
trode and included all other 63 electrodes. We applied a 1–40 Hz bandpass filter
and downsampled the data to a 100 Hz sampling frequency. We then applied a
baseline from 200 ms before stimulus onset and up to stimulus onset. Then only
the 500 ms post stimulus onset was considered, resulting in a sample shape of 63
electrodes and 50 time points. The data was z-score normalised at each channel
for each trial.

3.3 Training

All models were trained using the same protocol, without any specialised hyper-
parameter tuning. The batch size was kept at 128 the optimiser was a standard
stochastic gradient descent with a momentum of 0.9. The learning rate was on
a cyclic schedule [20], which makes it gradually decrease with “warm restarts”.
We kept the cycle parameters of the original paper, making starting cycle length
T0 = 15, and the cycle multiplier Tmult = 2. This learning rate scheduling lets
us avoid tuning the learning rate for each model. We trained the models for 945
epochs, giving us six warm restarts during training. For the single-subject task,
we only trained models for 460 epochs, giving five restarts. In the original EEG
THINGS paper, they ended their recording session with an inbuilt test split,
showing a repeat of one of the twelve images in each category. We chose not to
use this, as there could be potential cofounders with only using the last trials as
the test set. Instead, we split the set randomly and tested on 20% of the original
data. All models are trained on one NVIDIA V100 graphics processing unit with
32 GB of memory, which was enough to contain the full dataset and models.

3.4 Models

Six different model architectures were tested for this experiment, representing
widely different modelling approaches for sequences: convolution, graph, recur-
rent and transformer. Representing convolutional models, we chose the popular
EEGNet [19]. A compact and efficient way to handle time series, convolutional
kernels are applied across the signal and summarised by max-pooling layers.
Then representing graph neural networks, we chose the dynamic graph con-
volutional neural network (DGCNN) [25]. Graph neural networks encode the
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electrode montage as a graph structure, modelling the electrode relationships
as a non-euclidian space. Since EEG electrodes do not inherently have a graph
structure, they let the adjacency matrix be a learnable part of the network,
hence the name “dynamic”. The DGCNN uses spectral graph convolution to
transmit information across the graph. Then, for a recurrent network, we chose
the long-short term memory (LSTM) architecture for EEG described in the book
[29]. The LSTM works by establishing consecutive recurrent layers with gating
for long and short-term relationships across the time series. Recently, the trans-
former model has shown its prowess in NLP, but it is not clear how it works
on more standard time-series data structures. We decided to test the standard
transformer model as described in [28] using the attention mechanism to find
relationships across the time series. Then, because the vanilla transformer is
not standard for time series analysis, we also included the EEG Conformer [26],
which combines a convolutional block to encode the time series to make it bet-
ter suited for the transformer model. The implementations for all these models
were based on the TorchEEGEMO [30] and Braindecode PyTorch module [24],
to ensure these were as standardised as possible.

Only small changes were made in how dropout was handled. Three versions
of each model were created to allow for diversity in model size. One “small”,
one “medium” and one “large” for each model type chosen. With the size of the
training set as a guide (∼ 200, 000 samples), we aimed for the small model to be
underparameterised (�100,000), the medium-sized model to have a similar size
(∼ 100, 000) and the large model to be overparameterised (> 100, 000). Some
models differed from this, to avoid straying too far away from the original design.
The number of trainable parameters for each model can be seen in Table 1 and
details of the implementation can be seen in the provided code. The dropout rate
was changed for each model size, so that small models had a dropout of 0.25,
medium-sized models had 0.5 and large models had 0.75, to prevent overfitting.
Additionally, weight decay regularisation was applied equally to all models, with
λ = 0.001. For the single-subject task, only small models were used and a dropout
rate of 0.5 was used.

For a linear baseline model, we chose the Common Spatial Patterns + Lin-
ear Discriminant Analysis (CSP + LDA) [17]. This method is an adapted LDA
model specifically for EEG event-related (ERP) signals. CSP + LDA works by
identifying separatable spatial patterns as orthogonal waveforms in the EEG
signal and treating them as features for an LDA. This is the method that per-
formed best in most of the MOABB [13] leaderboards of BCI tasks, and typically
works very well in clearly separatable conditions, see for example [2]. All models
were first tested on a trivial task on the THINGS dataset with the same prepro-
cessing, data structure and training method and achieved > 95% accuracy. The
trivial task was a binary classification task of identifying the subject of the trial.
This shows that all models can learn by using this methodology.
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Table 1. Number of trainable parameters in each model type and size

Model type Small Medium Large

EEGNet 1,888 11,504 132,096

LSTM 3,902 98,402 1,161,002

DGCNN 12,527 107,563 1,049,763

Transformer 3,090 141,866 1,144,834

Conformer 36,026 164,906 1,404,946

4 Results

4.1 Cross-Subject Task

The accuracy, precision and recall of each model on the cross-subject task test
set are reported in Table 2 alongside their training time. Since the learning rate
scheduling cyclicly resets performance, the performance was measured as the top
recorded accuracy between the last 5 epochs before a warm reset. We remind
the reader, that the task is a binary classification and the chance level is at 0.5.
Best results are highlighted with bold text.

Table 2. Cross-subject performance metrics and training time.

Model Size Accuracy Precision Recall Training time

EEGNET small 0.5710 0.5713 0.5717 2h 47m 39 s

medium 0.5710 0.5713 0.5711 3 h 37m 56 s

large 0.5710 0.5701 0.5702 7 h 57m 33 s

LSTM small 0.5665 0.5677 0.5703 2 h 54m 59 s

medium 0.5641 0.5711 0.5713 2 h 54m 27 s

large 0.5665 0.5697 0.5705 4 h 7m 41 s

DGCNN small 0.5708 0.5715 0.5729 2 h 53m 39 s

medium 0.5681 0.5715 0.5736 2 h 54m 8 s

large 0.5660 0.5657 0.5788 2 h 55m 0 s

Transformer small 0.5041 0.4938 0.5021 14 h 3m 40 s

medium 0.5047 0.4991 0.5043 14 h 8m 24 s

large 0.5042 0.4997 0.4994 14 h 8m 24 s

Conformer small 0.5710 0.5713 0.5718 6 h 25m 28 s

medium 0.5710 0.5713 0.5711 13 h 12m 54 s

large 0.5710 0.5710 0.5710 15 h 21m 1 s

CSP + LDA linear 0.4970 0.5067 0.49320 0 h 31m 21 s

We see that multiple models converged to a top performance measure of
57.10% accuracy. Both EEGNET, the Conformer and the DGCNN reached this
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mark or within 0.01% of it. Similarly, we see precision and recall around 57.15%
in those same models, showing how there was no clear bias to either false pos-
itives or negatives. A notable exception is the DGCNN, which reached 57.88%
in recall, which is marginally higher. The LSTM reached a peak accuracy of
56.65%, making it almost as good. The vanilla transformer was by far the worst
performing DL model, not able to reach above chance level. Crucially, the CSP
+ LDA linear model did also not reach more than the chance level. For further
analysis, we identify the best-performing models as the EEGNet, DGCNN and
the Conformer.

Training Speed. The small versions of EEGNET, LSTM and DGCNN all
trained in under 3 h. The medium-sized LSTM and the medium and large ver-
sions of DGCNN also cleared this mark, showing how scaling the graph neural
network did not slow performance. EEGNET did slow down with bigger param-
eter sets, and the LSTM also slowed down with its large version. All these mod-
els were somewhat shallow, with only a few layers, which might explain how
they were able to train this fast. It might also show, that reaching a breaking
point in too many parameters per layer slows down training immensely. The
transformer model was the slowest to train (>14 h), with no improvement with
smaller parameter sets. This is likely due to its need to find relationships across
the time series, resulting in poor scaling in the sequence dimension. The Con-
former was in between these at 6 h 25 m, showing how introducing convolutional
kernels to the transformer model helps both with efficacy and efficiency.

4.2 Single-Subject Task

Table 3 reports the average best performance across subjects on the single-
subject task. We extract this by finding the best test performance during the
average of the last five epochs per restart cycle. We see that the best-performing
model is the EEGNet reaching 61% in accuracy, precision and recall. The Con-
former model is close in performance, hovering around 60.5% in all three mea-
sures. Neither the transformer nor the linear CSP + LDA was able to learn the
dissociation, getting around the chance level in all measures. The LSTM and the

Table 3. Average best performance on the single-subject task.

Model Type Accuracy Precision Recall

EEGNet 0.6098 0.6107 0.6117

LSTM 0.5669 0.5677 0.5721

DGCNN 0.5663 0.5670 0.5680

Transformer 0.5010 0.4988 0.5034

Conformer 0.6037 0.6042 0.6097

CSP + LDA 0.4983 0.4983 0.5009
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DGCNN achieved similar or worse performance, compared to the cross-subject
task, suggesting that the smaller dataset made it harder to generalise to the test
set effectively.

Fig. 1. Mean accuracies during training

Figure 1 shows the average performance during training. Note that the num-
bers in the table and the figure are not directly compatible as different subjects
might reach the best performance during different training cycles. Here we see

Fig. 2. EEGNet, Conformer and DGCNN performance compared on different object
labels. Gradient barplot (background) is ordered according to average test performance
on each object, with one slice representing a single object category. The colour gradient
maps accuracy, with red being 0 and green being 1. The overlaid line represents the
compared model and follows the same order, to reveal potential differences. (Color
figure online)
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the propensity of all models to overfit on the smaller dataset. We can also see
that EEGNet reaches peak performance much faster (100 epochs) whereas the
Conformer needs 300 epochs of training. The LSTM and DGCNN were more
susceptible to overfitting getting lower testing performance but higher training
accuracy.

4.3 Comparative Analysis on Stimulus Labels

Motivated by the above results of a somewhat stabilised performance across
different model architectures, we ran a more detailed analysis of the individual
object labels and the top-down labels, both provided in the original THINGS
initiative work. We start with a comparative analysis of all object categories, see
Fig. 2 for visualisation. Since multiple models achieved similar performances, it is
worth investigating if they are classifying the same image categories with similar
success. Here we use the cross-subject models and stick to the small version of
each model, that achieved 57.1% accuracy.

Object Labels. Looking at Fig. 2. We see that all models follow roughly the
same trend of which object categories that were labelled correctly. Especially the
Conformer and EEGNet show very similar behaviour on the test set, whereas
DGCNN shows the same overall distribution but with higher variance for indi-
vidual object labels. In order to verify that these indeed have similar perfor-
mance, we run a paired t-test (428 degrees of freedom) on the accuracies for
each object. None of these showed a significant difference: Conformer vs EEG-
Net - t = 1.116 p = 0.265, EEGNet vs DGCNN - t = 1.175 p = 0.241, Conformer
vs DGCNN - t = 0.794 p = 0.428. We also note that there is some difference
among object labels. Best-performing objects have around 70% accuracy, while
the worst-performing labels sit under 30%. We note that there seem to be a few
objects that give a particularly bad performance, as seen in the small dent on
the far left side of each subplot in Fig 2.

Top-Down Categories. Lastly, we look at the performance divided into the
top-down categories, that we originally chose to make the animacy labels. It is
important to note that these categories are not balanced, meaning some cat-
egories like “animal” hold over 100 different objects, whereas “people” only
contain five. In Table 4, we report the average accuracy of the small version
of EEGNet, DGCNN and the Conformer on the test set, stratified by these top-
down categories. First, looking at the “alive” categories, it is clear that especially
the two categories “body part” (46.7%) and “animal, insect” (42%) are under-
performing compared to the others. While one could argue they are underrepre-
sented in the data, as both have a low number of objects (34 and 17), we also see
that the “people” category has the highest accuracy (56%) among the “Alive”
categories, while being the worst represented (5). Another possible explanation
is these images have different image compositions or low-level image features
(e.g. contrast, colours) to the other categories, resulting in highly different EEG



Exploring Deep Learning Models for EEG Neural Decoding 171

Table 4. Best models average accuracy on top-down categories

Label Top-down category #Objects Accuracy

Alive animal 113 0.5511

body part 34 0.4669

animal, bird 25 0.5230

animal, food 20 0.5006

animal, insect 17 0.4196

people 5 0.5607

all 214 0.5185

Non-living tool 59 0.6270

sports equipment 51 0.6097

electronic device 43 0.6432

musical instrument 33 0.6143

weapon 29 0.5881

all 215 0.6176

Total 429 0.5710

signals, see Fig 3 for example images. This explanation would require a more
detailed analysis of the original images. The last explanation is the cognitive
one, where insects and individual body parts are simply not reliably treated as
“living” in the same way that other animals and people are. Again more analysis
would be needed to confirm or deny this hypothesis in later work.

We then look at the “Non-living” categories and we notice two main things.
Firstly, the distribution of accuracies is much more even, all of them hovering
around 60%, maybe with the exception of “electronic devices” sitting at 64.3%.
This even spread could simply be from the much more balanced number of
objects in each category, reducing the risk of model bias towards specific object
categories. It could also reflect a higher degree of similarity in the neural rep-
resentation in these categories than seen for living objects. The second thing to
notice is that the average accuracy among “non-living” is almost 10% higher than
that for “alive” categories. We also see this reflected in Fig 3, where the top five
performing categories are “non-living” and all worst performing five categories
are all labelled “alive”. Possibly this shows that there was higher homogeneity
across the objects chosen as “non-living” since these were specifically picked
to be “handleable” objects, that is objects one could interact with using one’s
hands for some purpose. Indeed, it has long been known that such affordances
drive reliable motor cortex activation [22], which could be driving the higher
performance in these objects compared to animals. We provide possible next
steps in the Future Work section below.
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Fig. 3. Example images of the best and worst performing object categories, taken from
the THINGS initiative available at: https://osf.io/jum2f/.

5 Discussion

In this work, we tested 5 different DL architectures and a popular linear model on
a binary classification task of separating living vs. non-living entities, which was
created using the EEG THINGS dataset. Interestingly, the linear model did not
manage to find the dissociation between these two conditions. Instead, every DL
model, except the vanilla transformer, managed to achieve >56.5% accuracy on
both the cross-subject and the single-subject task, showing a reliable decoding
result. Firstly, this seems to demonstrate that in some decoding tasks applying a
nonlinear model is necessary to find patterns between stimulus and brain activity.
Secondly, we show here the feasibility of decoding high-level object features from
rapidly shown images (10 hz), even though the signal might be overlapping
between trials. We did not find that the specific model choice mattered greatly.
Vastly different architectures like the Conformer, recurrent and graph neural
networks all achieved the same peak performance. Perhaps suggesting a cap in
possible performance on this task around 57.10% accuracy. We leave it as an
open challenge for future work to achieve better results using the same setup.

We also ran an analysis on the similarity of performance on different object
labels in the three best-performing models, EEGNet, DGCNN and Conformer.
We found that the differences between models were not significant, but also not
identical. Especially the convolutional neural network EEGNet and the convolu-
tion+transformer architecture in the Conformer have similar performance. The
EEGNet and the Conformer also performed best in single-subject tasks, where
the sample size was much lower. One interesting observation is then that the
convolutional filters seem to be an effective representation of EEG signals when

https://osf.io/jum2f/.
https://osf.io/jum2f/.
https://osf.io/jum2f/.
https://osf.io/jum2f/.
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the number of samples is on the lower side. Even with the larger parameter (see
Table 1) set of the Conformer (36,000) compared to the DGCNN (12,500) and
LSTM (3,900), overfitting did not disrupt performance. Possibly, the convolu-
tional filters act as an information bottleneck, squeezing the features through a
smaller parameter set and decreasing the risk of overfitting.

We did only test this on a subset of the original full dataset, and on a single
binary classification task. However, this result is shown robustly across different
domains as an achievable task and the fact that the linear model was not able
to solve it in this case seems to suggest the necessity to use deep models in
some circumstances. As discussed above the THINGS dataset presents a unique
challenge, as it is uncertain how much information is present in the EEG signal,
when images are presented in such a rapid fashion. It is certain that having
overlapping stimuli in the signal will decrease the signal-to-noise ratio for single
trials. This is compensated for, by having many more trials. Our results suggest
that DL models are well positioned to perform decoding tasks in this setting of
many trials of lower signal quality.

5.1 Future Work and Conclusions

Much future work is needed in this area. Here we chose to test different model
types and sizes as the main independent variables. However, other choices would
be equally interesting to test. We suggest looking at different preprocessing pro-
cedures like filtering, artefact removal and normalisation. Not much research
has been done on decoding the performance of deep learning models on EEG or
MEG signals, which leads to relying mostly on conventions. We would also sug-
gest trying to decode other high-level or low-level object features. The THINGS
initiative provides many different possible image labels, which could be used as
targets for decoding tasks.

Another important avenue for future research is to develop a better under-
standing of model behaviour. We ran a simple comparative study here, but much
more work is needed to understand how DL models represent and analyse EEG
signals. Our analysis of object labels showed that models had quite different per-
formances on different top-down categories of objects. We saw how convolutional
models were successful in our study. One could use visualisation techniques to
understand what parts of the signal are driving the performance of the models.
Similarly, the DCGNN are learning a graph representation of the EEG electrode
relationships during training. We suggest that looking at this graph might give
insight into how the model has learned to represent the signal and hint at a
functional connectome.

While this work replicated a well-known finding in the cognitive neuroscience
literature, that the animacy of seen objects can be decoded from brain signals,
this is an important step for incorporating DL techniques into the toolkit of cog-
nitive neuroscience. Artificial neural networks hold much potential but need to
be explored more systematically in new and older settings, to test where they are
useful compared to traditional methods. Replicating known findings using new
methods is a reliable and necessary preliminary step to test the method’s overall
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utility. With the entrance of bigger and more complex datasets like the THINGS
initiative, using DL models to perform neural decoding in settings where linear
models simply cannot capture the relationships is a likely next step for using
functional neuroimaging to advance our knowledge of brain representations.
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