

ICLR 2024

PRIORITIZED SOFT Q-DECOMPOSITION FOR LEXICOGRAPHIC REINFORCEMENT LEARNING

FINN RIETZ, ERIK SCHAFFERNICHT, STEFAN HEINRICH, JOHANNES A. STORK

MOTIVATION

- Improve RL's sample-efficiency by means of knowledge transfer
- We assume a fixed MDP: $\langle \mathcal{S}, \mathcal{A}, \mathbf{r}, p, \gamma
 angle$ with continuous $\mathbf{a} \in \mathbb{R}^d$
 - Multiple "subtask" reward functions $\mathbf{r} = [r_1, \dots, r_n]$
 - Solve subtasks seperately, transfer knowledge between tasks
- Challenges:
 - Q-Decomposition: $Q_{\Sigma}^* \neq Q_1^* + Q_2^*$ (Russel & Zimdars 2003)
 - Reward engineering: Incompatible subtasks?

LEXICOGRAPHIC REINFORCEMENT LEARNING

- Multi-objective RL $\langle \mathcal{S}, \mathcal{A}, \mathbf{r}, p, \gamma \rangle$ with priority ordering over subtasks
 - Notation: $r_1 \succ r_2 \succ \cdots \succ r_n$
 - Priority is set by practitioner
 - Priority resolves subtask conflicts
- Knowledge transfer?

PRIORITIZED SOFT Q-DECOMPOSITION: INTUITION

- Lexicographic RL problems with continuous actions
- Knowledge transfer from higher to lower priority subtasks
 - Learn r_1 once
 - ullet Transfer π_1^* and Q_1^* to n-1 lower-priority subtasks
 - Lower-priority subtasks are constrained to keeping higher-priority subtask near-optimal

PRIORITIZED SOFT Q-DECOMPOSITION: TECHNICAL

- ullet Assume access to already-learned Q_1^* for r_1
- ullet Define performance threshold $arepsilon_1$ for Q_1^*

$$ullet \max_{\pi_2} J(\pi_2) = \mathbb{E}_{(au \sim \pi_2)} igg[\sum_{t=0}^\infty \gamma^t r_2(\mathbf{s}_t, \mathbf{a}_t) igg]$$

• subject to:
$$\max_{\mathbf{a}' \in \mathcal{A}} Q_1^*(\mathbf{s}_t, \mathbf{a}') - Q_1^*(\mathbf{s}_t, \pi_2(\mathbf{s}_t)) \leq \varepsilon$$
 best Q-val in \mathbf{s}

$$\max_{\mathbf{a}' \in \mathcal{A}} Q_i^*(\mathbf{s}_t, \mathbf{a}') - Q_i^*(\mathbf{s}_t, \pi_n(\mathbf{s}_t)) \leq \varepsilon_i, \ \forall i \in \{1, \dots, n-1\}$$

• Knowledge transfer via constraints on already-learned Q-functions

RESULTS

- High-priority subtask r_1 : Obstacle avoidance
- Low-priority subtask r_2 : Goal navigation

THANK YOU

Prioritized Soft Q-Decomposition for Lexicographic Reinforcement Learning

Finn Rietz, Erik Schaffernicht, Stefan Heinrich, Johannes A. Stork

https://github.com/frietz58/psqd/